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1 Introduction

We study the evaluation problem of the scale risk. The method we have adopted is the risk
sensitive value measure (RSVM) method, which have been introduced in [8].

This method is developed originally for the project evaluation. Even so this method can
be applied to many evaluation problems in finance. For example we can apply this method
to the scale risk evaluation problems.

In this paper we overview the idea of the scale risk evaluation problem. For the details,
see [8] and etc.

2 Risk-Sensitive Value Measure(RSVM)

We give the definition of the Risk-Sensitive Value Measure(RSVM) and summarize the prop-
erties of this measure.

2.1 Definition of the Risk-Sensitive Value Measure

Definition 1 (Risk sensitive value measure(RSVM)) Let X be a linear space of ran-
dom variables, then the risk sensitive value measure(RSVM) on X is the following functional
defined on X

U (α)(X) = − 1
α

log E[e−αX ], (α > 0), (2.1)

where α is the risk avertion parameter.

Remark 1 In the above definition, X is supposed to be the random present value of a cash
fllow or a return of some asset.

2.2 Properties of the Risk-Sensitive Value Measure

We first remark the following facts.

Proposition 1 (i) The following approximation formula holds true:

U (α)(X) = E[X] − 1
2
αV [X] + · · · . (2.2)

(ii) If X is Gaussian, then it holds that

U (α)(X) = E[X] − 1
2
αV [X]. (2.3)
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2.2.1 Concave Monetary Value Measure

Definition 2 (concave monetary value measure) A function v(·) defined on a linear
space X of random variables is called a concave monetary value measure (or concave monetary
utility function) on X if it satisfies the following conditions:

(i) (Normalization) : v(0) = 0,
(ii) (Monetary property) : v(X + m) = v(X) + m, where m is non-random,

(Remark: (i) + (ii) → v(m) = m),
(iii) (Monotonicity) : If X ≥ Y , then v(X) ≥ v(Y ),
(iv) (Concavity) : v(λX + (1 − λ)Y ) ≥ λv(X) + (1 − λ)v(Y ) for 0 ≤ λ ≤ 1,
(v) (Law invariance) : v(X) = v(Y ) whenever law(X) = law(Y ),

Remark 2 We don’t require the following positive homogeneity property:
(vi) (Positive Homogeneity): ∀λ ∈ R+, v(λX) = λv(X).

We next notice an important property of a concave monetary value measure.

Proposition 2 (global concavity) A concave monetary value measure v(·) satisfies the
following global concavity condition.
(iv) ’ (global concavity) :

v(λX + (1 − λ)Y ) ≤ λv(X) + (1 − λ)v(Y ) for λ ≤ 0 or λ ≥ 1

Proposition 3 Let v(·) be a concave monetary value measure. Then, for a fixed pair (X,Y ),
ψX,Y (λ) = v(λX + (1 − λ)Y ) is a concave function of λ.

Setting Y = 0 in this proposition, we obtain the following result:

Corollary 1 Let v(·) be a concave monetary value measure. Then ψX(λ) = v(λX) is a
concave function of λ and ψX(0) = 0.

From this corollary we obtain the following concept of “Optimal Scale.”
[Optimal Scale]

Let v(·) be a concave monetary value measure, and assume that v(X0) > 0 for some fixed
random variable X0. If v(λX0), λ > 0, is an upper bounded function of λ, then we can find
the maximum point λ̄. This value λ̄ is the optimal scale of X0.

2.2.2 Utility Indifference Value

For a utility indifference value we obtain the following result:

Proposition 4 Let u(x) be a utility function defined on (−∞,∞) and satisfy the usual prop-
erties of a utility function. Then the indifference value v(X) determined by the following
equation

E[u(−v(X) + X)] = u(0) = 0 (2.4)

is a concave monetary value measure.
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Remark 3 An indifference value does not satisfy the following positive homogeneity condi-
tion in general.
(Positive Homogeneity): ∀λ ∈ R+, v(λX) = λv(X).

Proposition 5 U (α)(X) is the indifference value of the exponential utility function:

uα(x) =
1
α

(
1 − e−αx

)
, −∞ < x < ∞ (α > 0). (2.5)

Corollary 2 U (α)(X) is a concave monetary value measure.

Corollary 3 U (α)(λX) is a concave function of λ.

2.2.3 Optimal Scale

From the fact that U (α)(λX) is a concave function of λ, we can discuss the optimal scale of
the investment, and we obtain the following result:

Proposition 6 Assume that the moment generation function of X converges and that the
following conditions satisfied,

E[X] > 0, P (X < 0) > 0. (2.6)

Then it holds that
(i) When λ (> 0) is small, U (α)(λX) > 0, and

lim
λ→∞

U (α)(λX) = −∞. (2.7)

(ii) The optimal scale λopt is

λopt =
CX

α
, α > 0, (2.8)

where CX is a solution of E
[
Xe−CXX

]
= 0.

2.2.4 Independence-Additivity Property

Definition 3 (Independence-Additivity) If a value measure v(·) satisfies
e) (independence-additivity): υ(X + Y ) = υ(X) + υ(Y ) if X and Y are independent,
then v(·) is said to have the independence-additivity property.

We can suppose that this property is desirable for the project evaluation functional, and
the following proposition is easily proved.

Proposition 7 An indifference value determined from an exponential utility function has
the independence-additivity property.

The converse of this proposition is known.
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Proposition 8 Let v(x) be an indifference value determined by a utility function u(x) which
is of C(2)-class, increasing, concave, and normalized such as u(0) = 0, u′(0) = 1, and u′′(0) =
α. Then, if v(x) has the independence-additivity property, u(x) is of the following form

u(x) = uα(x) =
1
α

(
1 − e−αx

)
. (2.9)

2.3 Good Points of Risk Sensitive Value Measure

(1) The RSVM is a concave monetary value measure.
(2) The RSVM is the utility indifference value of the exponential utility function, and it has
a risk aversion parameter α.
(3) The optimal scale of a project can be discussed.
(4) The RSVM has the independence-additivity property, and the RSVM is the almost only
one which has this property in the set of all utility indifference values.
(5) The dynamic RSVM has the time-consistency property, and the RSVM is the almost only
one which has this property in the set of all utility indifference values.

3 Evaluation of the Scale Risk

3.1 What is the Scale Risk

Let X be a return for an investment of I. We suppose that the return for the investment λI

is λX. Assume that E[X] > 0 and P (X < 0) > 0. If λ(> 0) is small then the investment λI

may be positively valued. But if λ is very large, then a very big loss may happen and so the
investment λI may be negatively valued. This is the “scale risk.”

3.2 Numerical Example

Let X,Y, Z be random variables whose distributions are

P (X = −10) = 0.02, P (X = 4) = 0.5, P (X = 8) = 0.48 (3.1)

E[X] = 5.64, V [X] = 8.9104, (3.2)

P (Y = −2) = 0.15, P (Y = 4) = 0.7, P (Y = 10) = 0.15 (3.3)

E[Y ] = 4.00, V [Y ] = 10.8000, (3.4)

P (Z = −1) = 0.3, P (Z = 4) = 0.6, P (Z = 16) = 0.1 (3.5)

E[Z] = 3.70, V [Z] = 21.8100. (3.6)

From the scale risk point of view, X has a big scale risk, Z has a less scale risk and Y is
between X and Z. Remak here also that

E[X] > E[Y ] > E[Z] (3.7)

V [X] < V [Y ] < V [Z] (3.8)
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We calculate the values of λX, λY and λZ. In the following table,

MVX(λ) = E[λX] − 1
2αV [λX], RSV MX(λ) = U (α)(λX), (3.9)

MVY (λ) = E[λY ] − 1
2αV [λY ], RSV MY (λ) = U (α)(λY ), (3.10)

MVZ(λ) = E[λZ] − 1
2αV [λZ], RSV MZ(λ) = U (α)(λZ), (3.11)

where MVX is the mean variance value of X.
α = 0.05
λ MVX RSV MX MVY RSV MY MVZ RSV MZ

1 5.417240 5.381304 3.730000 3.729802 3.154750 3.213878
2 10.388960 10.043808 6.920000 6.917064 5.219000 5.649037
3 14.915160 13.521364 9.570000 9.556959 6.192750 7.511068
4 18.995840 15.127878 11.680000 11.646280 6.076000 8.922791
5 22.631000 14.163164 13.250000 13.188966 4.868750 9.959279
6 25.820640 10.355244 14.280000 14.200910 2.571000 10.671750
7 28.564760 4.096341 14.770000 14.712311 -0.817250 11.100837
8 30.863360 -3.853309 14.720000 14.766822 -5.296000 11.282718
9 32.716440 -12.796062 14.130000 14.417932 -10.865250 11.251235

10 34.124000 -22.268194 13.000000 13.723921 -17.525000 11.038123
11 35.086040 -32.008482 11.330000 12.742895 -25.275250 10.672577
12 35.602560 -41.881393 9.120000 11.528915 -34.116000 10.180772
13 35.673560 -51.819265 6.370000 10.129651 -44.047250 9.585588
14 35.299040 -61.788863 3.080000 8.585410 -55.069000 8.906588
15 34.479000 -71.773961 -0.750000 6.929195 -67.181250 8.160181
16 33.213440 -81.766643 -5.120000 5.187368 -80.384000 7.359922
17 31.502360 -91.763044 -10.030000 3.380592 -94.677250 6.516870
18 29.345760 -101.761270 -15.480000 1.524834 -110.061000 5.639959
19 26.743640 -111.760395 -21.470000 -0.367698 -126.535250 4.736348
20 23.696000 -121.759963 -28.000000 -2.287744 -144.100000 3.811738

From the above table we can see that the RSVM is a desirable value measure which
contains the evaluation of scale risk.

4 Hedging of the Scale Risk

A numerical example
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Let X and W be given as follows,

P ({ω1}) = 0.02, P ({ω2}) = 0.5, P ({ω3}) = 0.48, (4.1)

X(ω1) = −10, X(ω2) = 4, X(ω3) = 8; E[X] = 5.64, V [X] = 8.9104, (4.2)

W (ω1) = 10,W (ω2) = −1,W (ω3) = −1; E[W ] = −0.7800, V [W ] = 2.3716. (4.3)

(The distribution of X is same as before. )
Then we obtain

U (0.05)(X) = 5.381304 > 0, U (0.05)(10X) = −22.268194 < 0 (4.4)

U (0.05)(W ) = −0.8301 < 0, U (0.05)(10W ) = −9.5976 < 0. (4.5)

So, X may be carried out but 10X, W and 10W are not carried out.
On the other hand, we obtain the following results,

U (0.05)(X + W ) = 4.7498 > 0, U (0.05)(10X + 10W ) = 38.4748 > 0. (4.6)

Therefore, both X + W and 10X + 10W may be carried out. This means that W or 10W

are valueless, but we can hedge the scale risk of 10X by the use of 10W .

5 Inner Rate of Risk Avertion(IRRA）

5.1 Definition of the Inner Rate of Risk Avertion (IRRA）

Definition 4 Let X be an asset. Then a solution α of the following equation

U (α)(X) = 0 (5.1)

is called the inner rate of risk avertion (IRRA) of X, and denoted by α0(X) .

Remark 4 The larger α0(X) is, the smaller the risk of X is. So the IRRA can be a rating
index of assets.

5.2 Existence of the IRRA

For the existence of IRRA, we obtain the following result:

Proposition 9 Assume that the moment generation function of a random variable X con-
verges, and the following conditions satisfied,

E[X] > 0 and P (X < 0) > 0. (5.2)

Then the IRRA α0(X) of X exists and is unique.
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6 Concluding Remarks

The books and articles relating to this paper are listed in the References. ([1, 2, 3, 5, 6, 7, 8,
9, 10, 14, 15])

[Problems to which the Risk-Sensitive Value Measure Method can be Applied]
(1) Project evaluation.
(2) Evaluation of financial (or real) assets.
(3) Evaluation of big projects (energy or resources exploitation).
(4) Evaluation of research projects.
(5) Evaluation of the intellectual property.
(6) Evaluation of the credit risk.
(7) Evaluation of a portfolio.
(8) Evaluation of a company.

The papers, [4], [11], [12] , [13] are relating to those applications.
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