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Abstract

The empirical evidence has showed that the empirical distributions
of log return on stocks has usually more or less skewness and kurtosis
when compared with normal distributions. In this article we attempt
to verify that the Geometric Lévy Process’s capability of capturing the
empirical evidence. We also evaluate the option prices by MEMM and
compare them with the results of Black-Scholes model.
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1 Introduction

The normal distribution has a long and illustrious history, and then has
become the workhorse of the financial asset pricing literature. But as at-
tractive as the normal distribution is, it is not consistent with all the feature
of the empirical evidence, which has showed that the empirical distributions
of daily log return on stocks has usually more or less skewness and kur-
tosis when compared with normal distributions. The empirical evidence
suggests the presence of jump components in asset price process that are
responsible for relatively large and sudden movements, but occur relatively
infrequently[see Scott(1997) and Hilliard(1998)].

Early studies of asset returns attempted to capture this empirical evi-
dence by modeling the distribution of continuously compounded returns as
a member of the stable class, of which the normal is a special case. Lévy
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initiated a general investigation of stable distributions and provided a com-
plete characterization of them through their log-characteristic function in
1924. Lévy also showed that the tail probabilities of stable distributions
approximate those the Pareto distribution in 1925. For applications to fi-
nancial asset returns, stable distribution were popular in the 1960’s and early
1970’s (see Mandelbrot(1963), Fama(1965), Samuelson(1967, 1976), Granger
and Morgenstern(1970), Fama and Roll(1971), Blattberg and Gonedes(1974)
Fielitz(1976), Hagerman (1978), simkowize and Beedles(1980), Tucker(1992)
), but they are less commonly used today. Campbell(1997) summarized that
they have fallen out of favor partly because they make theoretical model-
ing so difficult; standard finance theory almost always requires finite second
moments of returns, and often finite higher moments as well. Stable distri-
butions also have some counterfactual implications.

Recently, Y.Miyahara(2001) has developed [Geometric Lévy Process &
MEMM] pricing model for the incomplete market. This model exhibits
several appealing economic properties, including a capability of describing all
manner of new-information arrival and consistency with the efficient-markets
hypothesis because the model exhibits certain martingale properities.

In this article, applying [Geometric Lévy Process & MEMM] pricing
model, we attempt to verify the model’s capability of capturing the empirical
evidence by geometric Lévy process on 2 simple models, meanwhile, evaluate
the options price by MEMM and compare them with Black-Scholes model.

This article is organized as follow. Section 2 explains the [Geometric
Lévy Process & MEMM)] pricing model briefly. Section 3 verifies the model’s
capability of capturing the empirical evidence by geometric Lévy process on
2 simple models. Section 4 evaluates the options price under MEMM by
computer simulation, and compare them with Black-Scholes model. and
section 5 offers a summary and conclusions.

2 Geometric Lévy Process Model

The empirical evidence has showed that the empirical distributions of daily
log return on stock have usually more or less skewness and kurtosis when
compared with normal distributions. It also suggests the presence of jump
components in asset price process, which are responsible for relatively large
and sudden movements but occur relatively infrequently. Hence we employ
geometric Lévy processes with jump part to capture the above empirical
evidence. In this section, we explain the Geometric Lévy process model
according to Y. Miyahara(2001).

The price process of underlying asset S(t) is of the form S(t) = SpeX®,
here X (¢) is a Lévy process given by

X(t) =yt +oW(t) +Y (1), Y(0)=0, (1)



where W(t) is a standard Brownian motion and Y (¢) is the jump part of
X (t). We assume that Y (¢) is a compound Poisson process, namely

Y (¢ :/ / e N,(dsdz 2
D= Joa oo 7 2

where N, (dsdz) is a counting measure of a Poisson point process. We express
the Lévy measure v(dz) as

v(de) = cpld), >0,  pl(=00,00)) = 1, (3)

and we assume, for the simplicity, that
pldz) =3 pibey; D pi=1 p;>0. (4)
i=1 i=1

We will investigate the following two simple cases in this article..
e Model 1 (Gaussian + 1-jump model):

Suppose that the Lévy process consists of a Brownian motion and a jump
process, then the Lévy process is in the following form

X({t) = vyot+oW(t)+Y(), (5)
and the Lévy measure v(dz) of the jump part Y (¢) is
v(dz) = cd,(dzx), c>0, a#0.
e Model 2 (2-jumps model)

When the Lévy process is supposed to have no continuous part and to
consist of 2-kinds of jumps. Then the Lévy process is in the following form

X = Y@, (6)
and the Lévy measure v(dz) is
V(de) = clp18a, (d2) + pabuy (d2)),
where

c>0, pi,,p2>0, pr4+p2=1, a,ax#0, ay#as.

3 Simulation of Log Return Distributions of X (1)

In this section, in order to verify our model’s capability of capturing the
empirical evidence, we simulate the log return distributions of X (1).



3.1 Modeling

Both model 1 and model 2 in section 2 have four parameters (vo, o, a,c), or
(a1, az, p1,c) respectively, which characterize each log return distributions
of X(1). Our approach is to determine the parameters for modeling by
the method of moments so that the model’s moment would be equal to the
sample’s moment of the asset.

Suppose that i(z) is the characteristic function for X (1), and set
Fa
w(O) = (1)"my, mr € R, and k=1,2,34, (7)

where ¢+ = v/—1. Then we can obtain four equations on parameters, so the
values of the parameters may be obtained from these equations.
The following notations are devised for the convenience.

_ _ 2
by = mq, bz—mz—m1

bs = ms + Qm:l)’ — 3mime, by = my — 6m‘11 + 12m%m2 —4dmims — Sm%.

3.1.1 On Model 1

The characteristic function of X (1) is
ﬂ(Z) — eizw—%z2a2+c(eiza—1)‘ (8)
Then, from (7) we obtain the following equations !
Yot+ca =
(vo + ca)2 + 24+ ca? =
(vo + ca)® + 3(v0 + ca)(0? + ca?) + ca® =
(o + ca)* + 6(y0 + ca)?(0? + ca®) + 3(0? 4 ca®)? + 4(vo + ca)ca® + ca® =

This equations are changed to
Yot+ca = my=b
0%+ ca? my — mi = by
ca’® ms + Qmig — mimao = b3
mq — 6m] + 12mimy — 4myms — 3m3 = by

C(Z4 =

and we can derive

~ Iy . 25h 3 . 4 -
SO0 =1 RO =iy ea), $EO) = ~(o" +ea), FEO) = —iea’,  TH(0) =
ca



by

a = g7 (11)
b

c = =, (12)
bi

3.1.2 On Model 2

The characteristic function for X (1) may be

fi(z) = ec(p1et¥ @ +poet®92—1) (13)

Similar to model 1, we can obtain the equations 2
c(prar + paasz)
(prax + paaz)? + e(prai + p2a3)
A (prar 4 p2az)” 4 3¢ (pray + paaz) (praf + p2a3) + c(prat + paa;) =
c(pray + paag)* + 6¢% (pray + paas)*(prai 4 p2a3) 4 3¢% (prai + paa3)?
+4c* (prar + paaz) (praf + p2a3) + c(praj + paaj)

or

( ) = mi=b
c(prai +p2a3) = my—mi =by
( ) = m3—|—2m:f—m1m2:bg
( ) = mq—6m]+ 12mimy — dmyims — 3m = by

Since p; 4+ p; = 1, from above equations, we can derive

—B4+ VB2 -4AC

a = 2A (14)
. b3 — b2a1 _ —-B - \Y% B2 —4AC (15)
@ = bg — b1a1 - 2A ’

(bz — blaz)ag

= 16

P el — biar £ o)) (16)
(bz — blal)al

= 17

2= = el — bilar £ o)) (7)

by — b
e = 2 1(ay -I-az)‘ (18)

a1asz

where

A=02—bybs,  B=biby—bybs,  C =0b%—bybs.

~ k 5 .
a0)=1, T£(0) =i*c(praf + p2ak)




3.1.3 Restriction to the parameter

According to the properties of geometric Lévy process, when using the
method of moments to determine the parameters, there are several con-
dition restrictions to the parameters on both model 1 and model 2.

e On model 1
the parameters o, a,c must satisfy the following conditions.

>0, a#0, ¢>0.

e On model 2
the parameters p; and ¢ must satisfy the following conditions,

0< P < 17 c> 07
and for the solvability of the equations, it should hold that
B? —4AC >0

We will see the following example which explains the restrictions.

Example 1 when m; = 0.0, my = 1.0, both model 1 and model 2 have
unique parameter sets in real value on same restriction such that if
and only if my > m% + 3.

When we choose the third moment and fourth moment for simulation,
we must obey the above restriction.

3.2 Simulation results

The normalized third moment and fourth moment are represent of skewness,
kurtosis respectively. The normal distribution has skewness equal to zero,
as do all other symmetric distribution. The normal distribution has kurtosis
equal to 3, but fat-tailed distribution with extra probability mass in the tail
areas have higher kurtosis.

3.2.1 On model 1

When the sample’s moments {my,k = 1,2,3,4} are given, then we can
obtain the parameter sets (a, ¢, v, o) from above equations respectively. The
moments used in the model are summarized in table 1.

Table 1:value of parameters for Model 1

my = 007 mg = 1.0

my = 4.0 my4 = 5.0
parameter m3=10.3 m3=0.6 m3=20.9 m3=03 m3=0.6 ms=0.9
Yo -0.027 -0.216 -0.729 -0.007 -0.054 -0.182
o 0.954 0.800 0.436 0.977 0.906 0.771
a 3.333 1.667 1.111 6.667 3.333 2.222
c 0.008 0.130 0.656 0.001 0.016 0.082




Suppose that the jth sample path of n 4+ 1 prices Xg, X{,. ., X equally
spaced at intervals of length A over the fixed time span [0,77, so that X} =
Xj(kh),k =0,1,....,n, 7 =1,2,...,m and T" = nh. Let random variable
€, have a standard normal distribution and 7; have an unite distribution,
both random variables are supposed to have a independent and identical
distribution (I1ID) for {k =0,1,...,n, j =1,2,...,m}. Then we can design
the following algorithm for simulations.

e algorithm 1. simulation for Model 1:
1. obtain random variable 7 from the Poisson distribution:
_ _log(l—m)

- ch
2. iterate the following calculation for i =k 4+ 1, k+2,...,k + 7.

Xij = X{_l + voh + Uéf\/ﬁ.

3. Xiyryr =Xy, +a
4. iterate from step 1 to step 3 until k£ = n.

5. iterate step 4 for j = 1,2,...,m.

Then we are able to simulate for X (1) by the algorithm 1 when Xg is
given. In order to present the experiment distributions, denote that X, ., =
maz{X1,¥j,j = 1,2,...,m} and X,;, = min{X7,Vj,j = 1,2,...,m}.
Then we translate the following counting function f;(Ax) into density func-
tion of X (1).

H
Xmax - szn
filAz) = dian), H = Ce”(A—% (19)
=1 z
where
5o L ifXpm —iAr < X} < Xpin+iAz, j=1,2,....,m
(az) = p, otherwise.

Therefore the experiment distributions of X (1) may be computed, the sim-
ulation results are shown in figure 1 and figure 2. When the third moment
and fourth moment change, the value of parameters would become difference.
Then the distributions reflect the difference and have significant skewness
and kurtosis when compared with normal distributions. Two points are
noteworthy from the figure 1 and figure 2.

e when my = 4.0, the distributions are left skewed. The larger the value
of ms is, the larger the degree of left skewness is.

e when my = 5.0, the distributions have less skewness than m4 = 4.0,
but highly peaked, heavy tailed. The larger the value of ms is. the
larger the degree of peakedness, tailedness is.



3.2.2 On model 2

When the sample’s moments {my,k = 1,2,3,4} are given, then we can
obtain the parameter sets (a1, ag, p1, p2,¢) from the above equations respec-
tively.
Table 2:value of parameters for Model 2
my = 007 mg = 1.0
mq = 4.0 m4 = 5.0
parameter m3=10.3 m3=0.6 m3=20.9 m3=03 m3=0.6 ms=0.9
ay 1.116 1.154 1.076 1.540 1.615 1.630
a9 -0.816 -0.554 -0.176 -1.240 -1.015 -0.730
P1 0.422 0.324 0.14 0.446 0.386 0.309
D2 0.578 0.676 0.86 0.554 0.614 0.691
c 1.099 1.562 5.263 0.524 0.610 0.840

Similar to model 1, we can design the following algorithm for simulation.

e algorithm 2. simulation for Model 2:

1. obtain random variable 7 from the Poisson distribution:

log(1 — 7
__ log(l—m)

ch

. iterate the following calculation for i =k 4+ 1, k+2,...,k + 7.

Xi] = Xi]—l

. if py >77i_|_7_|_1

J _ Y7
X, =Xl ta.
else (or py > 1y, 1)

J — Y7
Xigryp1 = Xjpgr T a2,

. iterate from step 1 to step 3 until k& = n.

5. iterate step 4 for j = 1,2,...,m.

Similar to model 1, we are able to simulate for the distributions of X (1) by
the algorithm 2. the simulation results are shown in figure 3 and figure 4.
The distributions reflect the two jumps, have more significant skewness and
kurtosis when compared with normal distributions. The distributions show
also more skewness, peakedness and tailedness than model 1. Two points
are noteworthy from the figure 3 and figure 4.



e when my = 4.0, the distribution is left skewed, unlike model 1, the
degree of left skewness is the biggest on m3 = 0.6. Rank of peakedness
is ms = 0.6, m3 = 0.3, ms = 0.9 respectively.

e when my4 = 5.0, the distribution is left skewed almost as well as when
my = 4.0, but the distribution have more peakedness, and tailedness
when compared with my = 4.0. the degree of left skewness is the
biggest on m3 = 0.9. Rank of peakedness is msz = 0.9, m3z = 0.3,
ms = 0.6 respectively.

4 [GLP & MEMM] model vs B-S model

The theory of option pricing in a complete market is now well understood.
For example, recall that in the Black-Scholes model, the price process of un-
derlying asset is assumed to generate by geometric Brownian motion, Under
arbitrage-free assumption, the option prices are uniquely specified in term of
expectations with respect to unique equivalent martingale measure by mar-
tingale pricing technique. However, when the price process of underlying
asset is assumed to generate by geometric Lévy process with jump process,
it is not possible to replicate the payoff of the option prices by a portfolio
from the underlying asset and a bond. The market is incomplete due to the
jump, and then there are more than one equivalent martingale measures.
we select minimal entropy martingale measures(MEMM) to evaluate the
European call option by martingale pricing technique.

4.1 [GLP & MEMM] pricing model

According to Miyahara(1999)’s proposition, when employed the geometric
Lévy process to describe the price processes of underlying asset like model
1 and model 2, there exist a MEMM of the price process S(t). Under
the MEMM P*, The Lévy process for both model 1 and model 2 may be
described by following form.

e On Model 1
The Lévy process may be followed by
X(t) = (yo+ po*)t + aW(t) +Y (1), (20)
and Lévy measure may be
v (dz) = ", (dx), ¢ = ce ),

where 3 is the unique solution to following equation

Yo + (% + B)o? + (e — 1)1 = 0. (21)



e On Model 2
The Lévy process may be generated by
X(t)=X(0)+Y(t), (22)
and Lévy measure may be
vi(de) = ¢ (p10a, (dx) + pda, (dz)),

where

ay—1 ap—1

pae’e
prele ™ paele

_ pre’
1P T 4 poele

= C(P1656a1_1+]?2656a2_1)7

* j—
ap—17 p2 - ap—17

P
and J is the unique solution to following equation

pl(eal_l)eﬁ(eal_l) + p2 (€a2_1)65(6a2_1) =0. (23)

4.2 Simulation result

We have known that the Lévy measure v*(dz) may be obtain under the
MEMM P* through the 3. Therefore, using the numerical bisection method,
we are able to get an approximation value of 5. Then we use the Monte
Carlo simulation to calculate the approximation of this option price under

the MEMM P,

4.2.1 On model 1

We are able to get an approximation value of 8 by the numerical bisection
method, and then obtain the Lévy measure v*(dz). the parameters of v*(dz)
are summarized in table 3 when the sample’s moments {my, k = 1,2,3,4}

are given.

Table 3:value of v*(dz) for Model 1
my = 007 mg = 1.0

my = 4.0 my4 = 5.0
parameter m3=10.3 m3=0.6 m3=20.9 m3=03 m3=0.6 ms=0.9
08 -0.470 -0.353 -0.321 -0.493 -0.434 -0.294
¥ -0.455 -0.442 -0.790 -0.477 -0.410 -0.357
o 0.954 0.800 0.436 0.977 0.906 0.771
a 3.333 1.667 1.111 6.667 3.333 2.222
c* 0.000 0.028 0.341 0.000 0.000 0.007

Under the MEMM P*, European call option with strike price K and expi-
ration at time T might be evaluated by

C(S(t),t; K) = Ep[Maz(S(T) — K,0))]. (24)
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similar to algorithm 1 by substituting v*(dz) for v(dz), we use the Monte
Carlo simulation to calculate the approximation of the European call option

by
H

1 ¢ L
— > (filAz)et — K), Xi = Xomin + iA2 (25)
mez

C =
where
[ =min{i: cell(fi(Ax)eXfl -K>0), i=1,2,...,H}

The simulation result is showed in figure 3. The option prices reflect the
skewness and kurtosis of distributions on our models , have significant diffi-
dence when compared with Black-Scholes model. Two points are notewor-

thy:

1. The prices have some difference between the [Geometric Lévy Process
& MEMM] pricing model and Black-Scholes model.

2. The prices also have some difference between the ms > 0 and m3 < 0
for [Geometric Lévy Process & MEMM)] pricing model.

4.2.2 On model 2

Similar to model 1, we can obtain the Lévy measure v*(dz) and calculate
the option prices. the parameters of v*(da) are summarized in table 4 when
the sample’s moments {my, k = 1,2,3,4} are given.

Table 4:value of v*(dz) for Model 2

my = 0.0, mo = 1.0

my = 4.0 my4 = 5.0
parameter m3=10.3 m3=0.6 m3=0.9 ms =03 m3=06 m3=0.9
08 -0.379 -0.345 -0.321 -0.325 -0.296 -0.274
aq 1.116 1.154 1.076 1.540 1.615 1.630
a9 -0.816 -0.554 -0.176 -1.240 -1.015 -0.730
j 0.214 0.164 0.0.077 0.162 0.137 0.112
5 0.786 0.836 0.923 0.838 0.863 0.888
c* 0.997 1.462 5.161 0.436 0.524 0.753

The simulation results are shown in figure 4. Two points are noteworthy:

1. The prices have some difference between the [Geometric Lévy Process

& MEMM] pricing model and Black-Scholes model.

2. The prices also have some difference between the ms > 0 and m3 < 0
for [Geometric Lévy Process & MEMM)] pricing model.
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5 Summary

To capture the empirical evidence, which show that the distributions of daily
log return on stocks, has usually more or less skewness and kurtosis when
compared with normal distributions, we apply the geometric Lévy process
to define a price process of underlying asset, and provide the method of
moments to determine the parameters so that the model’s moment would
be equal to the sample’s moment of the asset. Our results of computer
simulation show those two models are capable of capturing the skewness
and kurtosis of distributions of daily log return on stocks eventhough they
are simple models. They also show that the distributions are significant
difference between model 1 and model 2 eventhough two models have same
moments.

We select MEMM to evaluate European call option prices for the incom-
plete markets. the results of Monte Carlo simulation indicate that: (1)The
prices are some difference between the [Geometric Lévy Process & MEMM]
pricing model and Black-Scholes model. (2) The prices also are some dif-
ference between the ms > 0 and m3 < 0 for [Geometric Lévy Process &
MEMM] pricing model. [Geometric Lévy Process & MEMM)] pricing model
may be potentially useful for the empirical analysis.
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for Model 1 (m1=0 and m2=1).




m4=4.0

50000
45000 |- A
40000 | i

35000 -

30000
25000

number

20000

15000
10000

5000 -

X(1)

number

70000
65000 |- A
60000 - |
55000 |-
50000 |-
45000 |-
40000
35000 |-
30000 |-
25000 -
20000 |-
15000 +
10000
5000 -

X(1)
m3=0.0 ———-m3=0.3 ------ m3=0.6 —- - — m3=0.9

Fig.2. The distribution of X(1)
for Model 2 (m1=0 and m2=1).




m4=4.0 m4=5.0

cop

0 L1 L1 I I | L1 L1 I I | L1 L O L1 | — | — L1 I I | L1 L1 L
0 05 1 15 2 0 05 1 15 2
strile price strike price
m4=4.0 m4=5.0
cop

05 1 15 2 0 05 1 15
strike price strike price
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