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Abstract

In this article, we investigate the MEMM (Minimal relative En-
tropy Martingale Measure) of Birth and Death processes and the
MEMM of generalized Birth and Death processes. We see that the
existence problem of the MEMM is reduced to the problem of solving
the corresponding Hamilton-Jacobi-Bellman equation.

1 Introduction

The relative entropy plays very important roles in various fields, for ex-
ample in the statistical physics, in the information theory, and statis-
tical estimation theory. Recently the ralative entropy has been proved
that it is related to the mathematical finance theory. We investigate
the MEMM (Minimal relative Entropy Martingale Measure) of Birth
and Death processes in this context.

In §2 we formulate our problems as a variation problems. In §3
we introduce the Hamilton-Jacobi-Bellman equation corresponding to
the variation problems. In §4 we see that the existence problem of
MEMM is reduced to the problem of solving the Hamilton-Jacobi-
Bellman equation, and we give an existence theorem of MEMM in

§5.



In §6 we extend the above results to the generalized birth and
death processes, and we also see an application of our results to the
mathematical finance.

Finally in §7 we give some remarks for the studies in the future.

2 Formulation of Problems

We denote by D[0, 7] the space of all cadlag functions, namely, right
continuous functions with left limit, and let F; be the natural filtra-
tions on the space D[0, 7.

Suppose that a probability P on the measuralbe space (P[0, 7],
F),F = Fr, is given and that this probability P determines a Birth
and Death process X (¢, w) = w(t),w € D[0,T] such that the jumping
measure v(z,dy) is

v(z,dy) = c(2)(p(2)d g1y (dy) + (1 = p(2))dppny (dy)). (1)
We assume here that
0<c <clz)<ez<oo, 0<p <px)<p2<l. (2)

Our purpose is to find the minimal relative entropy martingale
measure (MEMM) of the Birth and Death process w(t), w € D[0,T].
Now we give the definition of the MEMM. Let P be the set of all
equivalent martingale measures of w(t). (l.e., P is the set of all @

such that ) ~ P and w(t) is (), F;) martingale.)

Definition 1 (minimal entropy martingale measure (MEMM))
If an equivalent martingale measure P satisfies the following condition

H(P|P) <H(Q|P) VQeP (3)

where H(Q|P) is the relative entropy of Q) with respect to P, which is
given by the following formula

g |log{%2}], if Q<P

00, otherwise,

H(Q|P) = { (4)

then P is called the minimal entropy martingale measure (MEMM) of
w(t).

The basic properties of MEMM are described in §2 of [3]. For
example, it is known that if the MEMM exists then it is unique.

From the results for the case of discrete time processes, or from
the results of Nagasawa [7], we can suppose the following conjecture.



Conjecture 1 If the MEMM P exists, then the MEMM is a Markov
(i.e., the process w(t) is Markov with respect to (P, Fy)).

If this conjecture is true, then our problem is reduced to the prob-
lem to find the probability measure which has the minimal relative
entropy tith respect to P in the subset of all Markov equivalent martin-
gale measures. But unfortunately we couldn’t have proved the above
conjecture yet. So we first put our focus on the Markov equivalent
martingale measures, and after that we will investigate the original
problem.

Let M be the set of all Markov equivalent martingale measures.
We first investigate the minimal relative entropy Markov martingale
measure (i.e. Csiszdr’s projection on the set M).

From Conjecture 1, we can expect the following conjecture.

Conjecture 2 Suppose that there is a Csiszdr’s projection of P, P,
on M, then P is MEMM (namely, P is the Csiszir’s projection on
P).

We will see the relations of our results with the above conjectures
later.

By the results of Kunita-Watanabe [2], any Markov equivalent
probability measure () is obtained by the following way:
Set

B = {fa )i Belff 1O (), dy)d) < ) (3

and set

atoiti frw) = [ [ uswtum), ) Plaudy, )= [ [0 1), dy)n
(6)
where P(dudy,w) means the stochastic integral in the sence of Kunita-

Watanabe [2]. Let Q) be the probability measure on the space
D[0,T], F defined by

dQ\) (0T f0)

iz (7)

and under the new probability Q) w(t) is a jump Markov process
with the jumping measure e/(t*¥)p (2, dy).

It is easy to see that the condition of f(¢,z,y) such that the core-
sponding measure QU/) is a martingale measure of w(t) is

/(y - x)ef(t’l”y)l/(x, dy) = 0. (8)
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In the case of Birth and Death process, this condition is equivalent
to the condition that f(t,z,y) can be expressed as follows

fltay) = do(@)(y— ) +alt,) 0
y € suppr(z,-)={z+ 1,2 — 1},

where

dole) = 5 log (- H) (10)

and a(t,z) can be chosen freely under the condition that f(¢,z,y) of
(8) is in F. We denote by A the set of all such functions. For a(¢,z),
define f, (t,a,y) by

_J M@y —2)talt,z), yesuppr(z,:)={r+1l2-1}
falt,@:y) = { 0, otherwise,

_ (11)
and set F = {f, ¢ Fia € A}
Now our problem is to find fo € F such that

HQW)|P)y < HQYI|P), Vf, eF. (12)

3 Variation Problem and Hamilton-Jacobi-
Bellman Equation

The problem to obtain the Csiszdr’s projection on M is reduced to
a variation problem in the following way. As we have seen in the
previous section, we have to investigate the following minimization

problem
in H(oWa) | p 1
min H(QU)|P) (13)
This quantity is equal to
mi& Ep[a(0,T; f,, w)e?©Tifaw))], (14)
ac

Thus we know that our probrem is similar to stochastic control prob-
lems. So obaying to the idea of control theory, we introduce the
Hamilton-Jacobi-Bellman equation.
Set
pt.2) = min HQL,|Pu)

ag

= win B, [a(t,T; fo, w)e? T80 (15)

ag

where F; .y means conditional probability of P under the condition
that w(t) = =.



We can carry on the following calculation.

gO(t,$) = HggEP[a(tvtl;fav )‘|’04(t17Tfa7 ) tTfa,w)]

= min{Ep [ee(t,t1; fa, w)ea(t7T§fa7w)]
a€A

—I'EP[ (thT fm ) tTfa’ )]}
grélg{ll + IQ} (16)

I = Epla(t,ty; fa, w)e T3]

[Epfatyr: fo, w)et o) 0 Tifor) 7,
[Oé(t tlvfa ) ttl’fmw)]
[

// Xo(w(s=))(y — w(s—)) P(dsdy, w)eH1ife)]

[t,tl] xR

+EP[// a(s,w( ))P(de%w)ea(fﬂfl;fa,w)]
[t61]xR

By / / e ) (- w<s>>+a<s,w<s>>_1) v(w(s), dy)ds
ttl XR

ttlmf(mw)jl
= I+ 11,2 +1i3 (17)

Il
S

Since w(s) is martingale with respect to the transformed probabil-
ity measure e®(t1ifa) P we obtain

1171 =0. (18)

By Theorem 6.2 of Kunita-Watanabe [2], w(s) is a jump Markov
process with jumping measure e/a(>* ¥y (2, dy) = et =2)+a(s:2)y (5 dy)
under the transformed measure e*(t11:fa) P we obtain

I I 2
1m
tltt) —t

= a(t, w(t))e(w(t)) (exo<w<t>>+a<uw<t>>p
4 e do(w(t)Falta(r)

= alt, w(t))e(w(t)) x 2y/p(w(s)
= a(t, w(t))e(w(t))h(w(t))e ),

|
=
g
=
= =

where we set,

for the simplisity of notations.



Next we calculate the term 1 3.
¢

B = ~Epl [ elwlo)(h(u(s)e @D — dsertinten] - (a1)
¢

Therefore
lim —=— = —¢(a)(h(z)e® ") — 1) (22)

JFrom (18),(19) and (22), we obtain

g = () ) alt )~ D 1) (3

Next we will investigate the second term I in (16).

Iy = Epla(ty, T; fa, w)e 0T em)]
= Ep[Ep[a(ty,T; fu, w)e* @) | F ]
e Ep[ea(t,t1§fa7IU)EP|:a(tl7T;fa7w)ea(t17T§fa,w)|ftl]] (24)

We suppose that there is the optimal function ag(¢,2). Then the
term [y in (16) can be replaced by

Eple o0 D Bpla(ty, T fag, w)e 110 )| 7, ]
= Ep[ento oty w(t))] (25)

and (15) is equivalent to
plt,w) = min{h + Bp[e oty w(t)]} (26)

By Kunita-Watanabe [2, Theorem 6.2], {w(s),t < s < #;} is a
jump Markov process with the jumping measure efa(s’l”?‘/)l/(av7 dy) un-
der the transformed measure ¢*(b43/a®)d P(w). Therefore we obtain

Ep[ea(t,tl ;fa7w)99(t17 w(tl))] - S‘Q(L $)

i -1
= aa_f(tvx) + /(cp(t, y) — @(t,x))efa(tv$7y)y($7dy)
— Z—f(t, z) + 2¢(z)y/plz) (1 — p(x))ea(t,x)
X(sO(t,x +1) ; pltie—1) olt. )
= %210) 4 el@)hl@)e I Lplt, ), o)

where we set,

QO(t,$ + 1) + @(t,$ B 1)
2

Lo(t,x) = ( —lt,2)) (28)
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Now we have obtained the optimality equation

0= grélg {e(z)(h(z)(a(t,z) — 1)e*B®) 4 1)

+22(t,2) + e(a)h(@)e ) Lp(t, ) ). (29)

The equation is the so-called Hamilton-Jacobi-Bellman equation cor-
responding to the original variation problem (13).
Solving the above minimizing problem, we get
a(t,z) = —Lep(t, z) (30)
and 9
a—f(t, 2) = c(a)(h(z)e Lete) _ 1y, (31)

4 Sufficient Conditions for the Exis-
tence of MEMM

In the previous section, we have introduced the variation problem
related to the original problem, and we have reduced the problem to
the Hamilton-Jacobi-Bellman equation. In this section we will prove
that if the Hamilton-Jacobi-Bellman equation has a solution, then
there exists the Csiszar’s projection P* of P on M, and that P* is
also the Csiszar’s projection on P (i.e. P* is the MEMM of Birth and
Death process).

Theorem 1 Supose that the Hamilton-Jacobi-Bellman equation

%—f(t,x) = c(@)(h(z)e M7 1) 0<t<T, (32)
o(T,z) = 0 (33)

has a bounded solution, and let a*(t,z) be defined by
a*(t,z) = —Lep(t, z). (34)
Then the probability measure P* given by

dP*
a0 faxw)
5 =€ (35)
is the MEMM of the Birth and Death process w(t). And it holds true
that

H(P*|P) = #(0,a).



Proof.
Step 1. From the definition of f,«, it follows that

P =QVe) e M CP. (36)

Step 2. We prove that P* is the MEMM. First we prepare a lemma.

Lemma 1 (Fundamental Lemma, see [5] for example) Let P,Q,

and Q be probability measures defined on a probability space (Q,F)
such that P ~ @ ~ (). Then it holds that

40
HQIP) > [ o210 (37)
Using this lemma, we obtain
dpP*
HQIP) > Fo [ls 53| vQ e (39)

We will calculate the right hand side of this inequality.

dP*
dP

} = 04(07T§fa*7w)
_ // Jur (5, w0(5=), y) P(dsdy, w)
[0, T]xR
_ / / (e (4D _ 1)y (w(s),y)ds (39)
[0,T]xR

log{

We mention here that f,» is expressed in the folowing form

frlsz) = (o) + 2T D —elr 2y, )

—(p(t,y) — ¢(t,z)), Yy € suppr(z,-). (40)

This fact is easily checked by the use of a*(t,2) = —Le(t,z) and
suppv(z,-) ={x + 1,2 — 1}.
Using this equality, we obtain

dP*
log{ dP} = a0,7T; for,w)

B //[ 1 R{“OW(S—)H pls,w(s—) +1) — g(s,w(s=) — 1)

2
—((5,y) — s, w(s=)))  P(dsdy, w)

— //[0 T]XR(efa*(S,’LU(S)vy) — 1)V(w(8)7y)d8

)y — w(s—))

(41)



The second term of the above formula is calculated as follows.

//[0 T]XR(efa*(s,w(S)vy) — Dw(w(s),y)ds
N //[0 T]XR(eAO(w(s))(y_w(s))”*(W(S)) — Dy (w(s), dy)ds

T
_ /0 c(w(s)) (h(w(s))e ") _1)ds
/OT Zf (s,w(s))ds (42)

where the last equality follows from the assumption that (¢, z) is the
solution of the Hamilton-Jacobi-Bellman equation (31). Thus we have
obtained

loa{ )
//[0 - {(Ao(w(s—)) v o(s,w(s—) +1) ; o(s,w(s—) — 1))@ ()
T 899
~(pls,0) = (s wls=) pP(dsdy,w) - [ 2 s w(e)ds (13)

Since () is martingale measure and the functions Ag(z) and ¢(¢, z)
are bounded by the assumption, it follows that

Eo| o s {Ro(w(s—)) + Eelemltlowloalem)=t)y

x(y — w(s—)) P(dsdy, )|
=0. (44)

Using this result, form (43) we obtain

£ [los{ g}

= I V/[O,T]m{‘w’) pls, w(s=)) Pldsdy, w) - /OTZ—fw(s))ds].

On the other hand, by Ito’s formula

olt <>> <o w(0))
// ~ (s, w(s=))) P (dsdy. w)

399
+/0 22 (s, w(s)ds. (46)

9



From (45) and (46), we obtain the following result

o [los{ Y] = 0. w(0) - ¢ (1w (1) = p0,00). (@47

Therefore we have proved that

dP*
dP

HQIP) > Fo [ls{ 0} = wl0.00), vQeP. ()

Taking ) = P* in this formula, we obtain

dP*
HPIP) = Epe [log( 53| = w000, (19)
and we have finally obtained
H(QIP) 2 ¢(0,w(0)) = H(P*[P), YQe€P. (50)

This proves that P* is the MEMM, and the equality
H(P"|P) = ¢(0,a).
Proof of the theorem is finished. (Q.E.D.)

Remark 1 From the results of this Theorem, we know that the process
is not necessary temporally homogeneous under the MEMM even if it
is temporally homogeneous under the original probability P.

5 Existence Theorem of MEMM of Birth
and Death Process

In this section we prove that the Hamilton-Jacobi-Bellman equation
(31) obtained in Section 3 has a solution.
We investigate the following Hamilton-Jacobi-Bellman equation

Z—f(t,x) = c(z)(h(z)e ™02 — 1), 0<t<T, (51)
e(Tyz) = 0, (52)

where L and h(z) are given in Section 3 as follows

R e ) B
and
hie) = 2/p(a) (1~ (o). (54

10



Set
g(t,z) = e=#h), (55)

Then the equations (51) and (52) are transformed to

%%@,x) = —g(t,0)c(x) (h(z)e 22 — 1)
= o) (9tt,) = b ote o+ gl = 1)), (56
0<t<T,
and
g(T,z) = 1. (57)
We set
r=T—-t and u(r,z)=¢(T —T1,2), (58)
then we obtain
g—z(r, z) = —c(z) (u(r,x) - h(ac)\/u(r,w + Du(r,z — 1)) ,(59)
0<7<T,
and
u(0,2) = 1. (60)
We express this equation in the following form
du
8_7_(7_7 x)
- qwuw[“ﬂx+mguvw_ly—uﬂ@ — e(2)(1 = h(2))u(r, )
+c(z)h(z) [\/u(r,x + Du(r,z — 1) — (u(r, 2 + 1) ; ur,e — 1) ,
0<7<T, (61)
u(0,2) = 1. (62)

We concider the principal part of this equation

E(Tv x)
= clph(e) [PEEEDIREE T o] o) (- b)),
0<r<T. (63)

Let {q(7,z,y)} be the fundamental solutions of the above equation.
Then the solution u(r,z) of (61) and (62) is given by

11



u(re) = Sya(rey) +f5 ds T, alr = s y)e(y)h(y)
x [Vuls,y + Du(s,y — 1) — (u(57y+1);u(s,y—1))} (64)
0<7<T.

Here we mention that

1 -1
Vst Dty — 1) - LS ENFUI =) g (g
Therefore we obtain
a(ra) < Y qlr ) < 1. (66)
y
On the other hand, from the inequality
J
S (r,a) > —c(a)u(ra), (67)
it follows that
u(T,x) > exp{—c(z)7}. (68)
JFrom (66) and (68) it follows that
exp{—c(z)7} <wu(r,z) <1, 0<t<T. (69)

The existence of the solution of the equations (61) and (62) is as-
sured as follows. The right hand side of (64) is Lipshitz continuous

functional of u(7, ) on the space C' ([O,T] x R — [e7C2T, 1]) There-
fore there exists the unique solution of (64).
Now we have proved the following theorem.

Theorem 2 Assume that
0<ecp <elz)<ez<oo, 0<p <plz)<p2<l. (70)

Then the Hamilton-Jacobi-Bellman equations (51) and (52) have a
unique bounded solution.

Combining Theorem 1 and Theorem 2, we obtain

Theorem 3 If the assumptions of Theorem 2 are satisfied, then
(1)The MEMM P* of Birth and Death process exists, and P* is defined
by (35) in Theorem 1.

(2)Under the MEMM P*, the process wy is also a Birth and Death
process with the jumping measure

vi(x, dy) = el BTV (2 dy). (71)
(3) H(P*|P) = ¢(0,2).

12



Proof. By Theorem 2, the Hamilton-Jacobi-Bellman equation has
a solution. Therefore, by Theorem 1, the probability measure P*
defined in Theorem 1 is the MEMM. From the definition of P*, it is
clear that P* is a Markov probebility. (Q.E.D.)

Remark 2 We see in (2) of the Theorem that wy is a Birth and Death
process under the MEMM P*, but it is not necessarily time homoge-
neous even if it is time homogeneous under the original measure P.

6 MEMM of Genaralized Birth and
Death Processes

In this section we apply the ideas and the methods developed in the
previous sections to the generalized birth and death processes. We
mean by the generalized birth and death process such a process that
is a jump type Markov process with the state space

S=Han,n=0,%1,...}, a1 <a,<apy1,n=0,%1,..., (72)
and with the jumping measure

V(am dy) — C(an)(p(an)5{an+1}(dy) + (1 - p(an))(s{an_ﬁ(dy))' (73)

6.1 Formulation

We can suppose, as in section 2, the above process is defined on the
probability space (D[0,T], F, P),F = Fr, and that this probability P
determines a generalized Birth and Death process X (¢, w) = w(t),w €
D[0,T] such that the jumping measure v(z,dy) is given by (73).

We assume as before that

0<c <elz)<ea<oo, 0<p <pla)<p<l. (74)

We use the same notations as in §2. The condition on f(t,z,y)
such that the coresponding measure Q) is a martingale measure of
w(t) (see (8) in §2) is, in this case, as follows

Pn (an—l—l _ an)ef(t,an,an+1) + (1 —pn)(an—1 _ an)ef(t,an,an—l) —0. (75)

It is easy to see that this condition is equivalent to the condition
that f(t,x,y) is expressed in the following form

fltyan,y) = Ay —an) +5b(t, a,), (76)
yE Suppy(“?ﬂ ) = {an—|—17an—1}7

13



where

W 10g{<1 - p(“”)) (“” - “”—1)}7 (77)

Up41 — Ap—1 p(an) Upy1 — Ap

and b(t,a,) can be chosen freely under the condition that f(¢,z,y)
of (76) is in F. We denote by B the set of all such functions. For
b(t,x) € B, define f;(t,z,y) by

St an,y) = { Ay = @) + Bt an), Y € suppr(an,) = {ansr anr)

0, otherwise,
_ (78)
and set F = {f, ¢ F;b € B} _
Now our problem is to find fo € F such that
HQW|P) < HQUIP), V], eF. (79)
6.2 Hamilton-Jacobi-Bellman Equation
We investigate the following minimization problem
; (f)
min H(QV*|P), (80)
or eqivalently
min Ep[a(0, T; fy, w)e©Tifoem))], (81)
beB
Set
— : b
p(t,z) = gél]g H(Q(tb@ﬂp(t,x))
_ . . a(t,T; fu,w)
= min Ep, ot T; fr,w)e b (82)

where P; ;) means conditional probability of P under the condition
that w(t) =z, 2 € S = {a,,n =0,%£1,...}.

We can carry on the similar calculations as we have done in §3,
and we obtain the Hamilton-Jacobi-Bellman equation corresponding
to the new variation problem (80) and (82).

Before we state the Hamilton-Jacobi-Bellman equation, we have
to prepare several notations. We set

fin = pS%) (1= pn) (ﬁ) : (83)
-G T e

14



17(1_) _ (an - an_1) (%) (85)

9

Upy1 — Ap
h7(1+) = 6/\n(an+1_an)pn — :unl7(1+)7 (86)
P = eAnlan—a=an) (g oy y = gy 1) (87)

and we introduce the following operators

LMot a,) = (@t angr) — @t a,)), (89)
Lt a,) = (gt an—1) — @(t,a,)), (90)

i ) (+) L) =)
bt = (g7 ) 890t + (g7 ) £
(91)

Using these notations, we can state the Hamilton-Jacobi-Bellman
equation as

0=min {e(a,)(hn(b(t @) = e +1) + B2(t,a)
+c(an)hne? ) Lo(t a,)}. (92)

Solving the above minimizing problem, we get

b(t,a,) = —Le(t,ay) (93)

and, using this fact and (92) again, we obtain

If the equation

%—f(t, an) = c(ay) (hpe~Po0em) 1), (95)

o(T,a,) =0, (96)

has a solution and if the solution has good properties, then we can
do the similar argument with those which we have done in Theorem
1 of §4 and its proof. (But, unfortunately, we can not do the exactly
same argument. We see these situations in the later, after we study
the existence probrem of H-J-B equation.

15



6.3 Existence of Solution of H-J-B Equation

We next investigate the Hamilton-Jacobi-Bellman equation obtained
in the previous subsection. first aim is to get sufficient conditions for
the existence of the solution.

We investigate the following Hamilton-Jacobi-Bellman equation

%—f(t, @) = e(an) (hne Bo0e) 1), (97)
o(T,a,) =0, (98)

where
o = B 4 K = (069 + 1), (99)

i L (+) L =)

Le(t,an) = (17(;’) N l(_)) L™ o(t, an) + (m) Lot an).
(100)

Set
g(t,x) = e ¥, (101)

Then the equations (97) and (98) are transformed to

%(t,an) = —g(t,an)c(ay) (hne—itp(t,an) B 1)
= c(an) (g(t7 a,) — hy, (g(tvan—|—1)p"g(t7an_1)(1—/)n))) 7
persh (102)
oz =1, (103)

where we set,

We set
r=T-—t, and uw(r,z) =¢g(T —7,2), (105)

then we obtain

g_:f(T7 anx) = C(an) (U(T7 an) - hn (U(T, an+1)p"u(r, an_l)(l_pn))) ,
0<7<T, (106)

and
u(0, ) = 1. (107)
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We express this equation in the following form

Ju
8_7' (Tv QN)

= el [(pnt(F @) + (1 = po)u(r, an1)) — u(rsan)] - e(an) (1 = hn))u(r, an)
‘|’C(an)hn {U(T, an-l—l)pnu(Tv an—l)(l_pn) - (pnu(7—7 an-l—l) + (1 - Pn)u(ﬂ an—l))} )
0<r<T, (108)
u(0,2) = 1. (109)
We concider the principal part of this equation

ov

- (7 an)
or
= (@) [(pu0(7, ) + (1= oo, 1)) = 0(7, 6n)] = () (1 = h)o(r, an),
0<r<T. (110)

This linear equation has a solution. Let {¢(7,2,y)} be the funda-
mental solutions of the above equation. Then the solution u(r,z) of

(108) and (109) is given by

(T,an) Zq (T, an,y) —I—/ dSZ(] — S, an,y)c(an)hy,

x[wsmﬁn @anﬁ“ﬂ”—%mu@ﬂMJN%ﬂ—pr&%wﬁﬂ7
0<r<T. (111)

Here we mention that

U5, gt (5, )P = (pu(s, ) + (1= po)u(s, an-1)) < 0
(112)

Therefore we obtain

z) <> q(re,y) < 1. (113)

yeS

On the other hand, from the inequality

ou

3, (1h2) 2 —c(@)u(r,2), (114)
it follows that

u(r, @) > exp{—c(z)7}. (115)

From (113) and (115) it follows that
exp{—c(z)7} <u(r,z) <1, 0<r<T. (116)

Now we can prove the following theorem in the same way as in §5.
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Theorem 4 Assume that
0<er<e(z)<ep<oo, 0<pr<pl)<pr<l (117)

Then the Hamilton-Jacobi-Bellman equations (97) and (98) have a
unique bounded solution.

6.4 Existence of MEMM
Let ¢(t, a,) be the solution of H-J-B equation (97) and (98), and set

b (t,a,) = —Lo(t, a,). (118)
Then the function

)\n - Wn b*t7n7 E 717': n s Oy
fb*(t,amy):{ (y — an) +07(t, an) y € suppv(an, ) = {tnt1, an1}

0, otherwise,
(119)
is well-defined, and we define the new probability measure P* by
dpP*
— (0,1 fyx ,w)‘ 12
5 = ¢ (120)

Here we assume that P* is well-defined.
It is easy to see that this function fy=(t,a,,y) can be expressed in
the following form

Jor(tyan,y) = {An + (p(t, any1) — olt, an—l))} (y—an)—(p(t, y)—p(t, an))

p41 — Ap—1

= (log{ (=) (=) (ot ) - it @) ) (5-a0)
Ap41 — Gp—1 Pn Up41 — Ap

—(p(t,y) — o(t, an)), (121)
y € suppv(an,-) = {ant1,an-1}.

If the term m is bounded, then the arguments we have
done in §4 are available and we could obtain the similar results as
Theorem 1 (in §4) and Theorem 3 (in §5). However, the boundedness

m is not true in the general cases. So we need new ideas
and methods to proceed the discussion.

We see only the special case such that the price process is the

geometric birth and death proces in the next subsection.
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6.5 Application to Finance Theory

In this subsection we investigate the existence theorem of the MEMM
for the geometric birth and death proces, namely for the case

a,=¢€¢", n=0,=%1,.... (122)

Then the function fis(t, a,,y) of (121) is

frtte ) = o (o { (222 ) et ottt — ott, ) ) (y-e7)

e —1len -

—(p(t,y) — p(t,e")), (123)
y € suppv(an,-) = {ent! enm 1y,

In this case we can apply the technique of [6], and we obtain

Theorem 5 If the assumptions of Theorem j are satisfied, then the
MEMM P* of the geometric Birth and Death process exists, and it has
the following properties,

(1)The MEMM P~ is defined by (120).

(2)Under the MEMM P*, the process wy is also a geometric Birth and
Death process with the jumping measure

vi(a,dy) = e 0"y (2, dy). (124)

(3) H(P"|P) = ¢(0,2).

Proof. By Theorem 4, the Hamilton-Jacobi-Bellman equation has
a bounded solution. We can see that fy«(¢,a,,y) € F and that the
probability measure P* is well-defined by (120). We can follow the
story in §4 except the part of the proof of the fact that P* is MEMM.
For the proof of this fact we can adopt the discrete time approximation
method which is developed in the proof of Theorem 1 of [6]. (Q.E.D.)

7 Concluding Remarks

1) In this paper, we have investigated only such a case that the pricing
process is Birth and Death process. We would like to investigate the
cases where the price processes are more general Markov processes.
2) Secondarily we would like to discuss the same problems for the
semi-martingale price processes.
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