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1 Introduction

The L§vy processes are considered to be one of the most important stochas-
tic models for the mathematical nance theory. For example the [Geometric
L&§vy Process & MEMM] pricing model is introduced as one of the pricing
models for the incomplete market (see [9]). To apply these models to the
empirical analysis, we have to estimate the L§vy processes from the given
sequential data. So in this paper we investigate the estimation problems
for the L§vy processes, for examples, compound Poisson process, stable pro-
cesses and variance gamma processes, etc.

Two kinds of methods are available for the estimations: one is the max-
imum likelihood method, and the other is the generalized method of mo-
ments. We employ the generalized method of moments (or it should be
called the method of characteristic functions). The reason is as follows. The
Lgvy processes and the corresponding in nitely divisible distributions are
characterized by their generating triplets, and the generating triplets are
explicitly contained in the characteristic functions. So it is natural for us
to apply the generalized method of moments by the use of characteristic
functions.

In Section 2 we explain the methods used in the following sections, and
reduce the estimation problems for L§vy processes to these methods.

In the following sections we explain how to apply our methods to several
examples.



2 Method of Moments

We " rst survey the method of moments.

2.1 Classical Method of Moments

If a distribution has moments of any degrees, then we can apply the classical
method of moments. We rst summarize that method. - 1) Moments:

Let Z be a random variable de ned on some proper probability space.
Then the k-th moment of Z (in the sense of distribution) is

me = E[ZK]; k=0;1;2;::: (2.1)

2) Sample moments:
Suppose that the time series data

fz;;) =0;1,:::5ng; 2o =0: (2.2)

are given. Then the sample moments are

1X _
mk=ﬁ e »i=ziizizn 1=L12:00n k=120 (23)
i=1

3) Classical Moment Equation:

The (classical) method of moments is such a method that the distribution
is determined to to be one which satis es the following classical moment
equation

m=mMy; k=1;2;:::;N (2.4)
where N is a number depending on the number of parameters.

4) Characteristic function:
The characteristic function A(u) of Z is

o)

A(u) = Az(u) = E[e"“?] =exp(A(u)); i= il (2.5)
We use the following notations
) dkA ~ dkA
O = 22w AW = 22 W)
AT(U) = g AY(U) = g (u): (2.6)
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5) Formulae:

It is well-known that if Z has moments, then the following equalities

hold.

mk=E[zk]— E[(Z>"] A<k>(0)

So the classical moment equations are

1.
i—kA(k)(O) =my, k=1:2;::::

Using the following formulae

AD (u)
A® (u)
A® (u)
A4 (u)

(e

A<1)(u)A(u) i
A(Z) ) +AD W)y A(u)
A® () +3AAWAD (u) + (A<1><u))3 A(u)
A<4> () +4AC W)AD (u) + 3(AD (u))
+6AG(W)AD (U))? + AL U)* A(u)

we obtain the following results

e

A<1>(0)

i A<2>(0) + (A<1>(<>))2

i iiksf\“’ © + EA@AV0) + BOO)°

A®(0) + 4A®(0)AD(0) + 3(A?(0))?
+6AP(0)AD (0)? + (AD(0))*

6) Transformation of the Moment Equation:

2.7)

(2.8)

(2.9)
(2.10)
(2.11)

(2.12)

(2.13)
(2.14)

(2.15)

(2.16)

By the results obtained in 5), the moment equations (2.4) or (2.8) are

transformed to

AD©O) = imy
A®©) = im i (AD©))Y

= §my i (imy)?

(2.17)



= i(mzimd) (218)

-~

A®©O) = jimz i 3A®©OAD(0) + AD(0)°

= jimg i 3(imz+mdimy j (imy)®

= ji(mg j 3mzmy +2ms) (2.19)
ADQ) = myi 4AQ0)AD(0) +3AA(0))* + AR (0) (AP (0)) + (A (0))*

= my j 43i(imz+3mymy j 2m3)imyg) § 3(jmz + m3)?

i 6(imy + mé)(imy)? j (img)*

= my j 4magmy j 3m3 + 12mym? j 6m; (2.20)
¢oe
Set
ﬁl = (2.21)
fi, = mpim? (2.22)
s = g i 3oy + 23 (2.23)
fas = My jdmgrhy § 33+ 122 6], (2.24)
toe

then the moment equations are equivalent to the following equations.

AD©) = ifi; (2.25)

APy = ih (2.26)

A®@©) = jifs (2.27)

ADQ) = A (2.28)
¢o¢

2.2 Generalized Method of Moments (Characteristic Func-
tion Methods)

If a distribution does not have moments, then we can not apply the classical
method of moments. However the generalized method of moments can be
applied to such cases.



1) Sample Characteristic Function:

The characteristic function (in the sense of distribution) of Z is already
de ned. Wk here introduce the sample characteristic function by the follow-
ing formula

1 X iuj
Au) = = e =700 (2.29)
j=1

Note that ﬂ(u) is a consistent estimator of A(u):

1im Au) =A); il<u<a: (2.30)

2) Generalized Moment Equation:
The following equation is called the generalized moment equation.

AW =Au); il<u<ai1: (2.31)

2.3 Estimation of L§vy Processes

The L8vy process Zy is characterized by the generating triplet (%2; ©(dx);b)
(or (%%;°(dx);bc)c). Set Z = Z;. It is well-known that the distribution of
Z is an in nitely divisible distribution, and that the corresponding charac-
teristic function A(u) is

Au) = E[eizZ]=eXp(A(U))

w o, £
= exp j=—U+ "™ § 1 iux)°(dx)
2 X<t
7 D
+ (€™ j 1)°(dx) + ibu (2.32)
ixj_1
C ;;L Z 3 - J
= exp U+ el § 1§ iuxc(x) ©(dx)+ ibcii2.33)
2 (i)

What we have to do is to estimate the generating triplet (%2;°(dx);b) (or
(%2;°(dx); be)c) of the distribution of Z. Set fZx = Zx j Zk 1,k = 1,2;:: g,
then Z;k = 1;2;:::g is i.i.d. with the same distribution as Z since L§vy
process has temporally homogeneous independent increment. So, if we are
given an sequential data of an L§vy process, then we can apply the method
described above to estimate the distribution of Z.



3 Compound Poisson Model with Normal L$§vy
Measure

In this section we investigate the estimation problem of compound Poisson
processes. For the simplicity and the usefulness, we consider only the case
of normal L§vy Measure. (Other cases can be treated in the same manner.)
So we suppose that the L§vy Measure is
A N
O(dx) =cg(x;m; v)dx = 019211/ﬁ exp i M

= dx (3.1)

and the characteristic function A(u) is of the following form with the pa-
rameters (c; m;v; bo),

A) = Ele"?] = exp(A() (32)
z
AW =itou+ €510 =itou+c@@W i D; ()
where 7 m q

1
o) = e'"™g(x;m;v)dx =exp imu j %vu2 : (3.4)
il

Wk can apply the classical method of moments described in x2.1 to esti-
mate the parameters (c; m;Vv; by) as follows.

ADw) = ibo + c(im  vu)g(u) (3.5)
AP = _iov+c(im ) S () (3.6)
A®u) = §3cv(im jvu) +c@im j vu)® o) (3.7)
A®w) = 33cv2 i 6ev@im i vu)>+c(im jvu)* gu)  (3.8)
AD©0) = (b +cm) (3.9)
A®©) = jc(v+m? (3.10)
A®©) = jic(v+md)m (3.11)
A®(©0) = c@v?+6vm?+m?) (3.12)



Thus the classical moment equations (2.8) are

bo+cm = A

cv+m?) = Ay
cv+mdm = Az
c@v?+ovm?+m?) = Hhy

(3.13)
(3.14)
(3.15)
(3.16)

This equations are solved in the following way. From (3.14) and (3.15)

_fs,

By (3.14)

h
v+ =2
c

and (3.16) is
3c(v +mP)? i 2cm* = fig:

From these three equalities we obtain

U
3=ji2 — =Ny
Solving this equation, we obtain (remark that ¢ > 0)
r w
ﬁ% + 2411% i ﬁ4
c= 4Qﬁ3’4
A
and
bo —ﬁl 1 ¢Mm
f
v=—2jnm
C

Summarizing the above results, we have obtained
Result:

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)



Bo

(3.25)

(3.26)

(3.27)



4 Jump Di®usion (Compound Poisson Di®usion)
Model

Suppose that the L§vy process Z; is Z¢ = %Wy +bot+ J¢, where J¢ is a com-
pound Poisson process. Then the generating triplet of Z; is (%2;°(dx); bo)o,
and the Lfvy measure °(dx) is

o(dx) = ci(dx) (4.1)

where ¢ is a positive constant and %(dx) is a probability on (j A; 1) such
that %(f0g) = 0. Then the characteristic function A(u) is of the following
form

A(u) = E[e"?] = exp(A(u)) (4.2)
AW = i %%?u2 +ibou+c () j 1); (4.3)

where z 4
wu) = _1ei”X1/z(dx): (4.4)

We mention here that j2(u)j - 1, so

jc(™u) i 1)j - 2c: (4.5)
From this we obtain

Proposition 1 .

o o REAW)] _ o
Example 1 ( Discrete L§vy measure ) The parameter %2 is estimated
from the sample characteristic function by the use of the above proposition.

Suppose that the L§vy measure °(dx) is discrete, namely in the following

form
P e . >
O(dx) =cidx) =c  pjta(dx); pj . 0;) =1;2;:::;4; pj =1L
i=1 i=1
4.7)
Then
A 1 2,12 4 i * iuaj
Au) = i§3/4 uc+ibpu+c  pje™ j 1); (4.8)

j=1
The estimations of the parameters bg, ¢ and pj;j =1;:::;d can ke done by
the use of the (d+1) moment equations given in x2.1.
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Example 2 (Normal L§vy Measure) The estimations of %2 and by are
the same as the above example. When we have obtained the values of these
parameters, the rest part is carried on in the same way as in x3.
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5 Stable Process

Se( ;¢;€), (0<®<2 jl-" -1 jl<¢(<1,c>0).

In [11] the moment estimation is given. We have modi ed his methods.

Characteristic Function:

o AU) = Aggapie(U) = exp(A(u))
i ¢

A < icjuj%'l i i tan%Psgn(u). +i¢u; for ®6&1

u) =
= ogcjuj 1+1i Zsgn(u)logjuj +i¢u; for ®=1:
Polar coordinate:

A(u) = %(u)e*W
where
W(u) = jA@u)j = et
8

< cjui® tan Bsgn(u) +¢u  for ®6&1

u) = Im[A(u)] =
H(U) AW = icjuji gzsgn(u)logjuj +¢u for ®@=1

Judgement of ® =1 or ® & 1.
The following formulae
logjA()j = icjuj®
and

lim 1091 log iAW) _ o
uf1  logjuj

(5.1)

(5.2)

(5.3)

(5.4)

(5.5)

(5.6)

(5.7)

follow from (5.3). Using these formulae, we can judge whether ® = 1 or

® & 1, depending on the fact that the function

y = log jA(u)j

is almost linear or not.

12
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(i) Case of ® & 1.
Assume that we have judged that ® & 1. Choose u; and u; such that
ui;u2 &0 and u; & up, and we use the moment equation

jA) = jAWj; for u=ugu, (5.9)

which follows from the generalized moment equation (2.31). This is equiva-
lent to
cjurj® = i logjA(u1)i;  cjuzi® = i log jA(uy)] (5.10)

Remark 1 Since jAu)j - 1, it holds true that j log jA(u)j _ 0.

Solving this equation, we obtain the following estimators

91
log 10giAw);

log jA(u2)j (5.11)
Iogjﬂ—;' '
_ _logjAquy)j
e 12

For the estimation of — and ¢, we use the polar expression (5.3). Set
0w = ImA) = Im(LogA(u)) (5.13)

and choose uz and ug4 such that uz;us 6 0, uz & us and small enough.
Using the moment equation p(u) = (i(u), which follows from the generalized
moment equation (2.31), we obtain the equations

¢jusj® tan ?sgn(ue,) + ¢ Uz = {I(us) (5.14)
¢jusj® tan ?Sgn(m) + ¢ Us = {I(us) (5.15)
These are linear equations for  and ¢, and the solution is
A _ M(us)us i ((us)us
e(tan ) (jusj®sgn(us)Us i juaj®sgn(us)us)
_ (i(us)ug i ((us)us : (5.16)

&(tan Z2) (ju3j®it i jusi®it)ugus’

juai®sgn(uz)i(us) i juaj®sgn(ua)fi(u,)
juzj®sgn(us)us i jusj®sgn(ua)us
_juai®itugfi(us) i juaj®itusfi(us)
= : (5.17)
(ugj®il § jusj®il)usus

o>
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(ii) Case of ® = 1.

Assume that we have judged that ® = 1. Then 'ogjéf”)j = 'ogji/fj(u) = jc

Choose u; & 0. The estimator of ¢ is

log jA(uy)]
= j———= 5.18
T (5.18)
The equations for  and ¢ are followed from the moment equation p(u) =
(i(u) with ® = 1 and ¢ of (5.18), so
Ul il

_2. .
i€ g logjusj+¢ us = i(us) (5.19)
e
i€ g logjusj+ ¢ us =0(us) (5.20)
The solution is
N A
A _ Zu(Ue,_)w} i i(ug)us (5.21)
iC7(logjusj i logjusaj)usus
Lo N - Lo A\
po= (logjusj)usfi(ua) i (logjuaj)uai(us) (5.22)

(logjusj i logjuaj)uzus

14



6 Variance Gamma Model
VG(C; c1; ¢2; bo)

L&§vy measure, generating triplets, and characteristic function (A(u)):
The L§vy measure is
5 .

O(dx) = C  lgx<og €XP( i C1jXj) + lx>0g XP(§ C2JX]) jX] ildx; (6.1)

where C;c1; 2 are positive constants.
The generating triplet is (0;°(dx); bo)o, and the characteristic function

A\/ G(U) is

7 H iu iu T
Ave(u) = exp ibou i C Iog(1+C—)+Iog(1 i c_) (6.2)
() c 2
= elou@s L _“A (6.3)
1+8 lig
6.1 Estimation by Classical Method of Moments
Set
Ava(u) = expfA(u)g
~ iu iu T
A(u) = ibouj C log(l+ C_)+ log(1 i C—) ; (6.4)
1 2
then
. K 1 1 1T
AD@) = iby+iC - — (6.5)
Co g U Ci iU
<@ | 1 7
A¥u) = jC &2 Y + CEEN: . (6.6)
~ 1 1
) = = 9j -
A (U) j2iC (C2 " iU)3 i (Cl " iu1)[3 (67)
~ 1 1
O =
AY(u) 6C CEEL + CRENL (6.8)
So we obtain
) M w1
ADO) = i hh+C —j— ; (6.9)
Co. C
i Hy 1T
A®@) = jC S+ (6.10)
Gz O
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) Hy 1T
A®DO) = jiC Si (6.11)
2 &
) My " T
AD@O) = 6C S+ (6.12)
G G
From the above results, the moment equations (2.8) are
M 1
1 1
bo+C —ij— =M (6.13)
Co C1
My 1 |
e g
1 1
2C Zi— =M (6.15)
2 CL”
3]
1 1
6C S+ =g (6.16)
G ¢
We solve these equations as follows. Set
1 1
X1= j— <0, X2=—>0; (6.17)
C1 C2
then
Xy +Xp = i i bo (6.18)
C
22 _ Ny
X{+X5 = — (6.19)
C
3, .3 _ fs
X1 +X = E (620)
4.0 — ha
X1 +Xo = — (6.21)
C
By (6.19),
(X1 + X2)% = X2 + X3 + 2X1Xp = fz:—z + 2X1X2; (6.22)
and from (6.18), (6.22)
A A 2 f |
1 -
X1Xo = = (1 i bo)” . N (6.23)

2 cz 'c
When bp and C are given, by (6.18) and (6.23), x1 and x> are the solutions
of the following equation

A 1
(ﬁl i bp)? . ﬁ_z

A, b
Xzi(1|0)+ gh i

= =0 (6.24)

1
2
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Next we derive the equations for C and bp. Using (6.18) and (6.19), we

obtain
X+ x%)° = (xo+x2)(d i xaxa+ XB) e
_ (rib) ho 1 (huibo)® fo
B c ,C 12 C2 .I C
- & L ) gi—z i %—(ﬁl Ci2b°)2 (6.25)
So, by (6.20), A A A I
_ ) 3h2 _ 1 (N1 i bo)?
Az = (A1 i bo) >e 15 2 (6.26)
and
AC? § 3R, (A i bo)C + (Ay i b)®=0: (6.27)
Using (6.19) and (6.23), we obtain
Xi+x3 = g%+x§)z i 2x3x5
_ ﬁz!z . 2A1 (1 i bo)? ﬁz!!z
- ¢ '22 Tcz t'c
= ; g N h‘z(ﬁlc i0)° ;(ﬁl Ci:4b0)4: (6.28)
By (6.21),
_ 108 fo(hy i bo)®  1(Ry i bo)*
fig =St S (6.29)
and so
A.C3 j %ﬁ%cz i Ao(hy i bo)’C + %(ﬁl i bo)*=0: (6.30)
By (6:30) i (6:27) £ (A1 i bo), we obtain
ARy § bo)? § 2RAsC(Ry § bo) § A2C +2A,C2 =0: (6.31)

Eliminating (A1 § bo) by (6:27) £, § (6:31) £ (A1 i bo), we obtain the
following equation

RsCc(hy i bo)? i (A3+AsC)(R1 i bo) + AAsC =0; (6.32)
namely
(Pfs i Ay(Py i bo))C + Ag(Ay i bo)® i AS(AL i bo) =0 (6.33)

17



Solving this equation, we get the solution

_ AaByi bo)? i AR i bo) _ AsY 2 i AZY

C = ; (6.34)
Ay i bo) i Afig AaY i Aoy
where we set Y = (i1 j bo).
The equation (6.31) is writen as
ALY 2 j 2AsCY § AsC +2A,C2 =0 (6.35)

Using (6.34), we obtain

Ra(RaY i A2fiz)?Y 2 j 2Rs(Rsy 2 § A3Y )(RaY § hofis)Y
iN3(AsY 2 i RaY)(RsY § Aofs)C +2Rs(RaY? § A3Y )Y = 0:(6.36)

namely
ASAZY 4 + (2RA3 § 2Aah; § 3AZN5N,)Y 3+ 3A3A,Y 2 § ASAY =0 (6.37)
We know from (6.34) that Y & 0 because C > 0. Therefore we obtain
A3R%Y 3 + (2MN3 § 2Mshs § 3M3RsNa)Y 2+ 3N3AsY § ARz =0 (6.38)

Suppose that the above equation (6.38) has a solution. Using this solu-
tion, we obtain the following procedure.

Result:
Let Y be a solution of (6.38). Then

fo = A1iY (6.39)
_ fay2 j A3y
¢ = iR (640

where we assume that € is positive. Next let (R1;%2) be the solution of
(6.24), and suppose that ®; < 0<2%,. Then

1

G = 1 (6.41)
1

& = 5 (6.42)

18



6.2 Estimation by Generilized method of Moments

We can apply the generalized method of moment to the Variance Gamma
model. The characteristic function Ay g (u) is given in (6.2) and (VG.chf.2).

Estimation of C:
It is easy to see that

Reflog A(W)] _ .

lim og §2C (6.43)

Using this formula, we obtain an estimator € of C

@ = ; LRellog ﬂ(ul)];

> U (6.44)

for some large number uj.

Estimation of bg, ¢1 and cy:
Let € be the estimator of C. The moment equations (2.8) are in this

case
o T
bo+C Ci i Ci =fi (6.45)
1
wy T
C g+z =h (6.46)
2
oy 1’11 o
G €1

We can solve this equation for by, ¢, and c;.
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7 CGMY Process

CGMY(C;G; M;Y;b1)

7.1 Characteristic Function

L&vy measure, generating triplets:
The L8vy measure of the CGMY process is

3 -

°(dX) =C  lix<og &XP(i GiX]) + hx=0g &XP(i Mjxi) jxj1 ¢+ dx;  (7.1)

where C>0;G _ O;M _ 0;Y <2. IfY - 0,then G>0and M >0 are

assumed. We mention here that the case Y =0 is the VG process case, and

the case G=M =0and 0 <Y < 2 is the symmetric stable process case.

In the sequel we assume that G; M = 0.

Since 7
Xjedx) < 1 (7.2)
ixj .1
we can adopt the generating triplet (0;°;b;);. And we know that b, is the
mean of the distribution %.

If Y <1, then the following condition
z
Xjedx) < 1 (7.3)
jxj<1
is satis ed. So in this case we have another expression of the generating
triplet (0;°; bg)o.

The characteristic function (Acomy (U)):

(1) The case Y =0.

This case is Variance Gamma case. The characteristic function Ay g (u) is
C z )
Avc(u) = exp ibpu+ ("X § 1o(dx)
ixj=0

i H iu iu 1%

= exp ibou j C log(1l+ 6) +log(1 § V)
o 1c

= ebougz 5 oA (7.4)

1+5 ligw
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Remark 2 If we adopt the generating triplet (0;°;b1)1, then

by =bo + ilx°(dx)=bo+C vic (7.5)
and
Y2 {4 My Rl M iy T
Ave(u) = exp i b jC Mig UiC Iog(1+—)+log(1 i)
(o) 1c
= eilricHidues b oA (7.6)
1+5 liwyg
(2 Thecase Y <landY &0.
C z D
Acemy (U) = exp ibou + " i 1)°(dx)
ixj>0 .
n
= exp ibpu+Ci(i¥Y) M ijiu)’ § M +G+iu)’ jG'
7.7
If we adopt another expression of the generating triplet, (0;°(dx);b;);, then
we obtain
C Z D
Acomy(U) = exp ibu+ (" j 1 j iux)°(dx)
0 s x>0 .

= exp i b1+C|(|Y)Y(MY LiGe'ihy u
+Ci(iY) M jiw)Y i MY + (G +iu)Y -GY (78)

Remark 3 (i) It follows from these formulae that

bo=b1+Cj(iY)Y(M il G il (7.9)

(ii) The right hand side of (A.7) or (A.8) converged to the characteristic
function of VG when Y ¥ 0, namely
Y2 i . 3 2
lim,  ibou icw M iiwY i MY +(G+iwY j G
= |bou i C(Iog(M i |u) ilogM + Iog%G+|u) i logG)

= ibpuj C Iog(l i —)+Iog(1+—) : (7.10)
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(3) The case

Acemy (U) =

(4) The case

ACGMY (wy =

Y=1.
C z D
exp ibiu + "™ i 1 jiux)°@dx)
>0
Y Hp T u

exp iu+C (M .lu)log(1|—)+|u + (G+|u)|og(1+ﬂ).|u

Y ¥} iu 1%
exp ibhu+C (M jiu)log(l i —)+(G+|u) Iog(1+—)

1<Y <2.
C z _ D
exp ibju+ €@ j1jiux)°(dx)
jxj=0

n
exp ibiu+Ci(iY) (M iiu)Y i MY +G+iu)’ jGY
3 ‘o
+iuCi(iY)Y MYiljGYit
n 3 3 o
exp i b1+ Cj(iY)Y MViljGYil y
- .

+Ci(iY) M jiu)Y i MY +(G+iu) j G ° (7.12)

Remark 4 The last formula is the same with the case (2).

Remark 5 The right hand side of (A.13) converges to the right hand side
of (A.11), namely

n 3

lim i by+Cj(iY)Y MYiljGYil y
Y1 =

+Cij
Y% [

= lim i
VAR

+C v —%

b1+ C

iiv)?
Y id)

3 - -

)
(iY) M jiu)’ iMY +G+iu) jG'
o -
'S{sz)SMYiliGYil u
1

M jiy(M jiw)'t i) iMMT i1

GG+ 1D 16E D)
= i(by +C(logM j logG))u
+C ((M hlu) log(M jiu)  MlogM + (G +iu) Iog(G+ iu) j GlogG)

= ibju+C

T
(M jiu)log(l j —) + (G +iu)log(l + _) (7.13)
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7.2 Properties of Characteristic Function

Proposition 2

8
i AW <Y, Y >0;
lim JC9IRellog A(Wl _ ) (7.14)
u¥l log u =0 Y -0
Proof (see Appendix B)
Proposition 3 (i) If0<Y <2
8
i < . iy, ¢,
lim ReflogA(u)] _ = 2Ci(iY)cos ;Y ; Y &1 (7.15)
url uY : jUC; Y =1
@ Ify=0 ]
. Re[logA(u)] _ .
uIl!m1W = j2C (7.16)
@iy Ify <o
Jim RellogA] = iCi(iY)(M" +G) (7.17)
Proof (see Appendix C)
Remark 6 It holds that
. Hy T
Jlr!anC i(iY)cos §Y = j%C (7.18)

7.3 Estimation

The CGMY processes have moments of any orders. So we can apply the
classical method of moments to the estimation problems of the CGMY pro-
cesses, but the equations obtained in the classical MM are not easy to solve.
And so we try to to combine the characteristic function method with the
classical MM. Using the above results, we can carry on the following esti-
mation procedures.

Judgement of Y =0 or Y - 0O:
We can use the result of Proposition 1 for the judgement of the condition
that Y >0o0r Y - 0. If the value

log jReflog A)]j

05 (7.19)
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is positive and separated from 0 for large u, we judge as Y > 0. If not, we
judgeasyY - 0.

(i) Case of Y > 0.
Assume that we have judged that Y = 0. Then we can continue the
following procedure.

1) Estimation of of the value of Y :
Using Proposition 1 again, we obtain an estimator of Y, ¥

o= '°ij?§§% f(ul)]j. (7.20)

where u;y is a number large enough.

2) Estimation of bs:
It is known that by = my (=mean). Therefore we obtain the estimator

bhh=fh (=m) (7.21)

3) Estimation of C:

(1) Thecase 0<Y <2;Y &1:

By the result (i) of Proposition 3, we obtain the estimator € solving the
following equation

A Ky |
Relloo M)l — 2ci(i?)oos ¥ (7.22)
(u3) 2
for some large number us.
(2) Thecase of Y =1.
By the result (i) of Proposition 3, we obtain the estimator € solving the

following equation

Re[log Aus)l _
T A (7.23)

for some large number us.

4)Estimation of G and M:
Let ¥, 61 and € be the estimators of Y, by and C respectively.
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(1) Thecase 0<Y < 2;Y & 1. The moment equations (2.8) for k =1;2
are in this case

CiGMP iy c'iz+mPiz =f, (7.24)
CiGiMTP i i2) cfizjmVid =Af, (7.25)
We can solve this equation for G and M, and we obtain the estimators é

and M.
(2) The case of Y =1: The moment equations (2.8) are in this case

M 1
¢ é+$ =f, (7.26)
i¢ gz =M (7.27)

We can solve this equation for G and M, and we obtain the estimators G
and M.

(ii) Case of Y - 0.

Judgement of Y =0 or Y <0.

When we have judged as Y - 0, then we have to check whether Y =0 or
Y < 0. This is done by the use of the results of (ii) and (iii) of proposition
2.

If the limit

im Re[log A(u)] (7.28)

diverged to j A, then we judge as Y = 0. If it converges, then we judge as
Y <0.

(iii) Case of Y =0.
1) Estimation of C:
Using the following formula

Re[log A(w)] _

Ny og U i 2C (7.29)

we obtain an estimator € of C

@ = ; LRellog ﬂ(ul)];

> ” (7.30)

25



for some large number uj.

2) Estimation of b;:
The estimator b1 of b is given by

B, =, (7.31)

3) Estimation of ¢; and c,:
Let € and By be the estimators of C and bg respectively.. The moment
equations (2.8) are in this case

My 1 il
¢ iz = A, (7.32)
Ky 1 il
We can solve this equation for ¢1 and c».
(iv) Case of Y <0.
1)Estimation of bs:
bh=h (=) (7.34)
2) Estimation of b;:
The estimator 6\1 of by is given by

3) Estimation of Y, C, G and M:
Let b1 be the estimator of by . By (iii) of Proposition 3, we obtain an
equation
ReflogA(us)] = iCi(iY)@G' +MY) (7.36)
for some large us.
The moment equations (2.8) are in this case
5 .
Ci(iY)Y(Y i1 G'iz+MmYiZ =f, (7.37)
= .
Ci(iV)Y(Y i (Y i2) G'i3iM¥i3 =fi;  (7.38)
5 .

CiGiV)Y(Y i)Y i2)(Y i3 G i*+M"i4 =4, (7.39)
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Solving the above 4 equations for Y;C; G; M, we obtain the estimators

¢:E:6:N.

27



Appendix
A Characteristic Function of CGMY

(1) ThecaseY =0.
This case is Variance Gamma case.

(%™ § DxileiMxgyx
0z 1 MZ 1
= i elY*dy eiMxgx
2, mz% 1
= j et M+¥)Xdx dy
L0 0
—_ - u 1 d
LY, gy y
= jlog(M+U) jlogM

= jlog(1+ %) (A1)

Z, )
, @ j DxiteiMXdx = jlog(1 j %) (A.2)

The characteristic function Ay g(u) is
C Z )

Avg(u) = exp ibpu+ (e j 1)°(dx)
jxj=0
i H iu iu 1%
= exp ibou j C log(l+ E) +log(1 j V)
o 1c
= i@z A A3)

1+5 ligg

(2) Thecase Y <landY &O0.
We can adopt the generating triplet (0;°;bg)o, and the characteristic
function is

A 7 1

Acemy (u) = exp ibou + J_Xj>0(eiux i 1)°(dx) (A.4)
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For u > 0, we can calculate
Zq
(eiUX i 1)XiliYeideX
0
Z q KZ 1
= j eiYXdy xiYeiMXdx

— i 1xiYei(M+y)XdX dy
0 0
Zu ) HZl ) ) ol
= i My Tuieivdy gy
3 -

= §i(li Y)Yi (M+u)" i MY

= iGY) M+u)’ MY (A5)
Z4 ) 3 -
@Y § DxitiYeiMXgx = i(iY) (M jiu)' i MY (A.6)
0
Therefore we obtain
C z D
Acemy (U) = exp ibpu+ ("™ j1)°(dx)
x>0 .
n o
= exp ibpu+Ci(iY) M ijiuw)’ i M +G+iu)’ jG'
(A7)

If we adopt another expression of the generating triplet, (0;°(dx); b1)1,

then we obtain
C Z D

Acomy(u) = exp ibiu+ (Y 1j iux)°(dx)
~ jxj=0
CA P v p)
= exp i b1i xO(dx) u-+ (e § 1)°(dx)
s xj>0 x>0
= exp i i iCiiY)M"itjG" i) u
3 ‘o
+Ci(iY) (M jiu)’ j MY +(G+iu)" jGY
n 3 -
= exp i by +Ci(GiY)YMYil; G i) u
3

FCi(iY) (M iin)Y § MY +G+in) 167 (A8)

(3) The case Y=L.

Z4
(€™ § 1 jiux)xiZeiMxgx
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O n o 1

Z3 d jxileiMx
= ™ j1ijiux)@ i MxileiMXA gy
0

dx
Hh N 1 Z1 o Ll
= § (X j1ljiux)(xiteiMx) o P (e § D(xitei™M*)dx
Z3
iM (@1 iux)(ixiteiM)dx
Z
= iu (Y™ D(xiteiM)dx
OP-Z 1 Z4q qa
iM "™ § D(xiteiMdx jiu  eiMXdx
0z o z
1 . . 1
= (iui M) (@ DxiIteiM)dx+iuM  eiMXdx
0 0
= jiuiM)log( i %)+ iu; (A.9)
where we use the following formula
E iu
, (@0 Dxilei™dx = jlog(L i 17) (A.10)
Therefore we obtain
C Z D
Acomy (U) = exp ibu+ "™ j 1 j iux)°(dx)
jxj>0
” T iu Tou ju, . T
= exp ibhu+C (M jiu)log(l j V)+ iu + (G+iu) Iog(1+6) iiu
Y2 8 . . %
= exp ibiu+C (M j iu)log(l i %)+(G+iu) Iog(1+%) (A.11)
(4) Thecase 1<Y <2
Z1
@M § 1 iux)xitiveiMxgy
o n o 1
Zq 1 d xiYeiMx -
= e ilij |ux)7@i o i Mxi'eiMXAdx
1 H'h A ) i} il z 1 . i} i} 1l
= iy @™ §1jiux)(xi’eiMx) o i iu ("™ DXxIYeiM)dx
7 0
M~ . . V.
i? @™ i1 iux)(xi’etM¥dx
0
_ lu 1 iux - iY oi Mx
= v, ™ § DH(x' et™N)dx
M MZ 4 Z 4 1T
iy "™ j 1)(x1YeiM)dx j iu ; xLiYgiMxqy
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N 7
= = M= e 1)(xiYeiMX)dx+—|uYM XY eiMxqy
0 Y o
iui M 3 v . iuM .
= ——i@iY) M i’ ME -T2 V)M 2
a i
= qi(iY)M jiu)y Miiw)VitiMil fiuiGiY)Qiy)MTit
(! )
= j(iY) M i)’ iMY +iuj(iY)Ym¥it (A.12)
Therefore we obtain
C 7 D
Acemy(U) = exp ibju+ (€ §1jiux)°(dx)

jxj=0
n 3 g
= exp ibiu+Cij(i¥Y) Mijiuw)’ i M +G+iu)’ jGY
3 “o
+iuCji(iY)y MYiljgril
n 3 3 e
= exp i b1+ Cj(jY)Y M'iliG"il y
3 ‘o
+Ci(iY) M jiu) iM’ +(G+iu) jG' (A.13)

B Proof of Proposition 2

(Proof)
(1) Thecaseof 0<Y <2,Y & 1.

n 3 3

Acemy(U) = exp i by+Ci(GY)Y MYiljG"il y
3 ‘o
+Ci(iY) M ijiw)Y i MY +G+iu)Y §GY (B.1)

Set
= .

o M
Mijiu = M2 +u2 eltm() (B.2)

3

G+iu = GIFE eife® (B.3)

Remark that pn(u) is a decreasing function and pg(u) is an increasing func-
tion, and that

Yy

lim @ =i (B4)
lim pe =5 (B5)
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" Hep___ Ty
Re[llogA(u)] = Ci(iY) M2+ u?  cos(Y pm(u)) i M

3 - T
P— v v
+( G2+u?2 cos(Yuc()) i G" : (B.6)
. Hoy T T
uIl'm1 cos (Y up (u)) = cos i§Y = C0s §Y (B.7)
_ Hy, |
uIl!m1 cos (Y ug(u)) = cos EAY (B.8)

iy, ¢ . " i ¢
If0 <Y <1, then cos'%Y is positive. If 1 <Y < 2, then cos '%‘Y
is negative. From these facts it follows that jRe[log A(u)]j is of order juj¥
when u ¥ 1. So we have obtained the result (7.14).

(2) ThecaseY =1:
Yo . R EZ
" H iu iu
A(uy=exp ibju+C (M jiu)log(l j V) + (G +iu)log(l + 6)

(B.9)

Using the same notations as above, we obtain
(@] 0O s 1

, | © N 2
logA(u) = ibju+C@ M2 +u2e*vU @log 1+%+iUM(U)A
(@) (S 11
AT U2 i ()AA
+ G2+ u2e @log 1+ e + iug(u) (B.10)

Re([)log A(W)] o = N

P— u2 .
= C@ M2+ u2@log 1+Wcosu|v|(u) i v ) singm (WA
0O s 11
P u? .
+ G2+ u2@log 1+ Gz tos Ug(U) i Ha(u)sin g (L)AA

(0] s s 1

2 2
= C@M log 1+%+UM(U)U+G|OQ 1+é i He(UWUA(B.11)

where we use

M . iu
= ; = B.12
) =P MmO =P BB

G . u
cos ig(U) p@T—uz, sin P (u) pﬁ (B.13)
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The formula (7.14) follows from (B.11).

@®Y=0
In this case
i H iu iu 1%
Ave(u) = exp ibou j C log(1+ 3) Flogli )
(B.14)
Therefore
Re[I%q A(uS)] 1
u2 u2
= jC@log 1+W+Iog 1+§A (B.15)

The formula (7.14) follows from (B.15).

@4Y<o0
In this case

3

A@) =expnibou+Ci(iY) (Mijiwy i MY +G+iu)’ jG' c()B.16)

and
u3p g
] _ . IV T - nY
Re[logA(u)] = Ci(iY) M2+u2  cos(Yum(u) i M
3p v il
+  G2+uZ cos(Ypug(u) i G (B.17)

Since Y <0, it is easy to see the formula (7.14).

(Q.E.D)

C Proof of Proposition 3

(Proof)
(i) () Thecaseof 0<Y <2,Y &1
) Hep___ 7y
Re[logA(u)] = Ci(iY) M2+ w2 cos(Y py(u) i MY
3p v 1
22 Ay .
+( G2+u? cos(Yuc() i G (C.1)
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: A,
uIl!m1 cos(Y um () = cosLl i 51\1( = CO0s EY (C.2)
i Y,
uIl!m1 cos (Y ug(u)) = cos EAY (C.3)
Using these formulae, we obtain
; B, T
. Re[logA(u Y
uIl!mleZCi(iY)cos %Y : (C.4)
(2) Thecase Y =1:
Re(glog A(u)é < 1

2 2
= C@Mlog 1+%+HM(U)U+GI09 1+%ip6(u)u'°(c.5)

and )
lim Rellg AW _ Ly (C6)
ull u
(ii) Thecase Y =0:
O s s 1
. u? u?
Re[logA(u)] = iC@log 1+ vzt log 1+ ?A (C.7)
and so Rellog AU
i e[logA(u)] _ .
(iii) Thecase Y < O:
] Hep_ 7y
ReflogA(u)] = Ci(iY) MZ+ W2 cos(Ypm(u)) i MY
3p v T
+  GZ+u? cos(Yug(u) iG" : (C.9)
SinceY <0
Jim RellogA] = iCi(iY)(M" +G) (C.10)
(Q.E.D.)
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