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Abstract

The Esscher transform is one of the very useful methods to obtain
the reasonable equivalent martingale measures, and it is defined with
relation to the corresponding risk process.

In this article we consider two kinds of risk processes (compound
return process and simple return process). Then we obtain two kinds
of Esscher transformed martingale measures. The first one is the one
which was introduced by Gerber and Shiu, and the second one is
identified with the MEMM (minimal entropy martingale measure).

We set up the economical characterization of these two kinds of
Esscher transforms, and then we study the properties of the above two
kinds of Esscher transformed martingale measures, comparing each
others.
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1 Introduction

The equivalent martingale measure method is one of the most powerful meth-

ods in the option pricing theory. If the market is complete, then the equiv-

alent martingale measure is unique. On the other hand, in the incomplete

market model there are many equivalent martingale measures. So we have to

select one equivalent martingale measure (EMM) as the suitable martingale

measure in order to apply the martingale measure method.

In the case of geometric Lévy process models, four kinds of measures have

been proposed. The first one is the minimal martingale measure (MMM),

the second one is the Esscher martingale measure (ESSMM), the third one

is the minimal entropy martingale measure (MEMM) , and the fourth one is

the utility martingale measure (UMM).

The Esscher transform is thought to be a very useful technique to obtain

the reasonable equivalent martingale measure, and it is defined in the relation

to the corresponding risk process. (See [6], [10], [1], [14], etc.) In this article

we consider two kinds of risk processes (compound return process and simple

return process).

According to these risk processes, we obtain two kinds of Esscher trans-

formed martingale measures. The first one is the compound return Esscher

transformed martingale measure, which was first introduced by Gerber and

Shiu ([10]), and this measure is called the “Esscher martingale measure (ES-

SMM)”. The second one is the simple return Esscher transformed martingale

measure. It is known that this martingale measure is identified with the “min-

imal entropy martingale measure (MEMM).” (See [9] or [14]). The MEMM

has been discussed in [15], [7], [9], and etc.

In §2 we explain the geometric Lévy process and in §3 we give the def-

inition of two kinds of Esscher transforms. In §4 we study the economical

implications of those transforms. In §5 we summarize the existence condi-

tions of those martingale measures, and finally in §6 we review the properties

of ESSMM and MEMM.

As the results of our consideration, we can say that the MEMM is very

effective to the option pricing theory from the theoretical point of view.
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2 Geometric Lévy processes

The price process St of a stock is assumed to be defined as what follows. We

suppose that a probability space (Ω,F , P ) and a filtration {Ft, 0 ≤ t ≤ T}
are given, and that the price process St = S0e

Zt of a stock is defined on this

probability space, where Zt is a Lévy process. We call such a process St the

geometric Lévy precess (GLP).

Throughout this paper we assume that Ft = σ(Ss, 0 ≤ s ≤ t) = σ(Zs, 0 ≤
s ≤ t) and F = FT . A probability measure Q on (Ω,F) is called an equivalent

martingale measure of St if Q ∼ P and e−rtSt is (Ft, Q)-martingale, where r

is the interest rate.

The price process St has the other expression

St = S0E(Z̃)t (2.1)

where E(Z̃)t is the Doléans-Dade exponential of Z̃t, and Z̃t is a Lévy process

corresponding to the original Lévy process Zt. Let the generating triplet of

Zt is (σ2, ν(dx), b), then the generating triplet of Z̃t, say (σ̃2, ν̃(dx), b̃), is

σ̃2 = σ2 (2.2)

ν̃(dx) = (ν ◦ J−1)(dx), J(x) = ex − 1, (2.3)

b̃ = b +
1

2
σ2 +

∫

{|x|≤1}
(ex − 1− x)ν(dx)

+
∫

{x<−1}
(ex − 1)ν(dx)−

∫

{log 2<x≤1}
(ex − 1)ν(dx). (2.4)

Remark 1 (i) It holds that supp ν̃ ⊂ (−1,∞).

(ii) If ν(dx) has the density n(x), then ν̃(dx) has the density ñ(x) and ñ(x)

is given by

ñ(x) =
1

1 + x
n(log(1 + x)). (2.5)

(iii) St satisfies the following stochastic differential equation

dSt = St−dZ̃t. (2.6)

(iv) The relations between Zt and Z̃t are more precisely discussed in [14].
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3 Esscher transforms

The Esscher transform is very popular in the field of actuary, and is thought

to be very important method in the actuary theory. (See [10]). Esscher

has introduced the risk function and the transformed risk function for the

calculation of collective risk in [6]. His idea has been developed by many

researchers ([10], [1], [14]), and applied to the option pricing theory.

We give the definitions of Esscher transform and Esscher transformed

martingale measure.

Definition 1 Let R be a risk variable and h be a constant. Then the proba-

bility measure P
(ESS)
R,h defined by

dP
(ESS)
R,h

dP
|F =

ehR

E[ehR]
(3.1)

is called the Esscher transformed measure of P by the random variable R

and h, and this measure transformation is called the Esscher transform by

the random variable R and h.

Definition 2 Let Rt, 0 ≤ t ≤ T, be a risk process. Then the Esscher trans-

formed measure of P by the process Rt and a constant h is the probability

measure P
(ESS)
R[0,T ],h

, which is defined by

dP
(ESS)
R[0,T ],h

dP
|F =

ehRT

E[ehRT ]
(3.2)

( Remark that P
(ESS)
R[0,T ],h

= P
(ESS)
RT ,h . )

and this measure transformation is called the Esscher transform by the pro-

cess Rt and a constant h.

Definition 3 In the above definition, if the constant h is chosen so that the

P
(ESS)
R[0,T ],h

is a martingale measure of St, then P
(ESS)
R[0,T ],h

is called the Esscher

transformed martingale measure of St by the process Rt, and it is denoted by

P
(ESS)
R[0,T ]

or P
(ESS)
RT

.
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4 Esscher transformed martingale measures

for geometric Lévy processes

4.1 Simple return process and compound return pro-

cess

When we give a certain risk process Rt, we obtain a corresponding Esscher

transformed martingale measure if it exists. As we have seen in the previous

section, the GLP has two kinds of representation such that

St = S0e
Zt = S0E(Z̃)t.

The processes Zt and Z̃t are candidates for the risk process.

We shall see the economical meaning of them. For this purpose, we will

review the discrete time approximation of geometric Lévy processes.

Set

S
(n)
k = Sk/2n , k = 1, 2, . . . . (4.1)

According to the above two kinds of expression of St, we obtain two kinds of

approximation formula.

First one is

S
(n)
k = S0e

Z
(n)
k , k = 1, 2, . . . , (4.2)

where Z
(n)
k = Zk/2n .

Second approximation is

S
(n)
k = S0E(Y (n))k, k = 1, 2, . . . , (4.3)

where E(Y (n))k is the discrete time Doléans-Dade exponential of Y
(n)
k ,

E(Y (n))k =
k∏

j=1

(
1 + (Y

(n)
j − Y

(n)
j−1)

)
(4.4)

and Y
(n)
k is defined from the following relations

eZ
(n)
k = E(Y (n))k =

k∏

j=1

(
1 + (Y

(n)
j − Y

(n)
j−1)

)
, k = 1, 2, . . . . (4.5)
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So we obtain

e4Z
(n)
k = eZ

(n)
k
−Z

(n)
k−1 =

(
1 + (Y

(n)
k − Y

(n)
k−1)

)
= 1 +4Y

(n)
k . (4.6)

From this we obtain

4S
(n)
k

S
(n)
k−1

=
S

(n)
k − S

(n)
k−1

S
(n)
k−1

=
S

(n)
k

S
(n)
k−1

− 1 = e4Z
(n)
k − 1 = 4Y

(n)
k (4.7)

and we know that 4Y
(n)
k is the simple return process of S

(n)
k .

On the other hand, we obtain the following formula for 4Z
(n)
k

4Z
(n)
k = log

(
1 +4Y

(n)
k

)
= log


1 +

4S
(n)
k

S
(n)
k−1


 , (4.8)

and we know that 4Z
(n)
k is the compound return process of S

(n)
k .

Remark 2 The terms ‘simple return’ and ‘compound return’ were intro-

duced in [1, p.294].

For t ∈ (k−1
2n , k

2n ) we define

Z
(n)
t = Z

(n)
k , Y

(n)
t = Y

(n)
k . (4.9)

It is easy to see that the process Z
(n)
t converges to the process Zt when n

goes to ∞.

On the other hand we can see that the process Y
(n)
t converges to the

process Z̃t. As we have seen, St satisfies the following stochastic differential

equation

dSt = St−dZ̃t. (4.10)

From this it follows that

dZ̃t =
dSt

St−
. (4.11)

Comparing the formulae (4.7) and (4.11), we know that the process Y
(n)
t is

the approximation process in the procedure of solving the equation (4.11) for

Z̃t. This fact means that the process Y
(n)
t converges to the process Z̃t.

Based on the above observation, it is natural for us to give the following

definition.

Definition 4 The process Z̃t is called the simple return process of St, and

the process Zt is called the compound return process of St.
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4.2 Two kinds of Esscher transformed martingale mea-

sures

Suppose that Zt is adopted as the risk process. In this case if the correspond-

ing Esscher transformed martingale measure P
(ESS)
Z[0,T ]

is well defined, then it

should be called the ‘compound return Esscher transformed martingale mea-

sure’. This is the Gerber-Shiu’s Esscher martingale measure introduced in

[10], and the term ‘Esscher martingale measure’ is usually suggesting this

compound return Esscher transformed martingale measure P
(ESS)
Z[0,T ]

.

Next we consider the case where Z̃t is adopted as the risk process. If the

corresponding Esscher transformed martingale measure P
(ESS)

Z̃[0,T ]
exists, then it

should be called the ‘simple return Esscher transformed martingale measure’.

In [14] the following results have been obtained.

Proposition 1 ([14], Theorem 4.2) The compound return Esscher trans-

formed martingale measure P
(ESS)
Z[0,T ]

is unique if it exists.

Proposition 2 ([14], Theorem 4.5) The simple return Esscher transformed

martingale measure P
(ESS)

Z̃[0,T ]
is unique if it exists.

From the proof of [9, Theorem 3.1] it follows that

Proposition 3 The simple return Esscher transformed martingale measure

P
(ESS)

Z̃[0,T ]
of St is the minimal entropy martingale measure (MEMM) of St.

Based on the above results, we give the following definition.

Definition 5 (i) The compound return Esscher transformed martingale mea-

sure P
(ESS)
Z[0,T ]

is called the ‘Esscher martingale measure (ESSMM)’ and denoted

by P (ESSMM).

(ii) The simple return Esscher transformed martingale measure P
(ESS)

Z̃[0,T ]
is

called the ‘minimal entropy martingale measure (MEMM)’ and denoted by

P ∗ (or P (MEMM)).

Remark 3 For the jump-diffusion models, the Brownian motion can be adopted

as the risk process. In that case the corresponding Esscher transformed mar-

tingale measure is the mean correcting martingale measure. (See [21] or [3]).
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5 Existence theorems of ESSMM and MEMM

for geometric Lévy processes

The uniqueness theorems are stated in the previous section. We next study

the Existence problem of Esscher transformed martingale measures.

5.1 Existence theorem of ESSMM

We suppose that the expectations which appear in what follows exist. Then

the martingale condition for an Esscher transformed probability measure

Q = P
(ESS)
Z[0,T ],h

is

EQ[e−rS1] = e−rS0EQ[eZ1 ] = e−rS0
EP [e(h+1)Z1 ]

EP [ehZ1 ]
= S0. (5.1)

This condition is equal to the following condition

EP [e(h+1)Z1 ] = erEP [ehZ1 ], (5.2)

and this is also equivalent to the following expression,

φ(−i(h + 1)) = erφ(−ih), φ(u) = EP [eiuZ1 ], (5.3)

where φ(u) = is the characteristic function of Z1.

To formulate the existence theorem, we set

f (ESSMM)(h) = b + (
1

2
+ h)σ2 +

∫

{|x|≤1}

(
(ex − 1)ehx − x

)
ν(dx)

+
∫

{|x|>1}
(ex − 1)ehx ν(dx), (5.4)

Then we obtain

Theorem 1 (Existence condition for ESSMM) If the equation

f (ESSMM)(h) = r, (5.5)

has a solution h∗, then the ESSMM of St, P (ESSMM), exists and

P (ESSMM) = P
(ESS)
Z[0,T ],h

∗ = P
(ESS)
ZT ,h∗ (5.6)

8



The process Zt is also a Lévy process under P (ESSMM) and the generating

triplet of Zt under P (ESSMM), (σ(ESSMM)2, ν(ESSMM)(dx), b(ESSMM)), is

σ(ESSMM)2 = σ2, (5.7)

ν(ESSMM)(dx) = eh∗xν(dx), (5.8)

b(ESSMM) = b + h∗σ2 +
∫

{|x|≤1}
x(eh∗x − 1)ν(dx). (5.9)

(Proof) The equation (5.5) is equivalent to the condition (5.3). Therefore

P
(ESS)
Z[0,T ],h

∗ is a martingale measure of St.

The characteristic function of Zt under P (ESSMM) = P
(ESS)
Z[0,T ],h

∗ , φ
(ESSMM)
t (u),

is by definition

φ
(ESSMM)
t (u) = EP (ESSMM) [eiuZt ] =

EP [eiuZteh∗ZT ]

EP [eh∗ZT ]
. (5.10)

And this is equal to

EP [e(iu+h∗)Zt

EP [eh∗Zt ]
=

φt(u− ih∗)
φt(−ih∗)

. (5.11)

By simple calculation we obtain

φ
(ESSMM)
t (u) = exp

{
t
(
−1

2
σ2 + i(b + h∗σ2 +

∫
{|x|≤1} x(eh∗x − 1)ν(dx))u

+
∫
{|x|≤1}(e

iux − 1− iux)eh∗xν(dx)

+
∫
{|x|>1}(e

iux − 1)eh∗xν(dx)
)}

. (5.12)

This formula proves the results of the theorem. (Q.E.D.)

5.2 Existence theorem of MEMM

As we have mentioned in the previous section, the MEMM, P ∗, is the sim-

ple return Esscher transformed martingale measure. (P ∗ = P
(ESS)

Z̃[0,T ]
). The

existence theorem of the MEMM is obtained in [9].

Set

f (MEMM)(θ) = b + (
1

2
+ θ)σ2 +

∫

{|x|≤1}

(
(ex − 1)eθ(ex−1) − x

)
ν(dx)

+
∫

{|x|>1}
(ex − 1)eθ(ex−1) ν(dx) (5.13)

Then the following result is obtained ([9, Theorem 3.1]).
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Theorem 2 (Existence condition for MEMM) If the equation

f (MEMM)(θ) = r (5.14)

has a solution θ∗, then the MEMM of St, P ∗, exists and

P ∗ = P (MEMM) = P
(ESS)

Z̃[0,T ],θ
∗ = P

(ESS)

Z̃T ,θ∗ (5.15)

The process Zt is also a Lévy process under P ∗ and the generating triplet of

Zt under P ∗, (σ∗2, ν∗(dx), b∗), is

σ∗2 = σ2, (5.16)

ν∗(dx) = eθ∗(ex−1)ν(dx), (5.17)

b∗ = b + θ∗σ2 +
∫

{|x|≤1}
x(eθ∗(ex−1) − 1)ν(dx). (5.18)

(Proof) The results of this theorem follows directly from the proof of [9,

Theorem 3.1]. (Q.E.D.)

It is easy to see that the function f (MEMM)(θ) is an increasing function

of θ. Therefore, if f (MEMM)(θ) is a continuous function and satisfies the

following inequality

lim
θ→−∞

f (MEMM)(θ) < r < lim
θ→∞

f (MEMM)(θ), (5.19)

then the equation (5.14) has a solution, and the MEMM exists.

6 Comparison of ESSMM and MEMM

The ESSMM and the MEMM are both obtained by Esscher transform, but

they have different properties. We will survey the properties and the differ-

ences of them.

1) As we have seen in the previous section, for the existence of ESSMM,

P (ESSMM), the following condition
∫

{|x|>1}
|(ex − 1)eh∗x| ν(dx) < ∞ (6.1)

is necessary. On the other hand, for the existence of MEMM, P ∗, the corre-

sponding condition is
∫

{|x|>1}
|(ex − 1)eθ∗(ex−1)| ν(dx) < ∞. (6.2)
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This condition is satisfied for wide class of Lévy measures, if θ∗ < 0. Namely,

the former condition is strictly stronger than the latter condition. This means

that the MEMM may be applied to the wider class of models than the ES-

SMM. The difference works in the stable process cases. In fact we can make

sure that MEMM method can be applied to geometric stable models but

ESSMM method can not be applied to this model.

2) The ESSMM is corresponding to power utility function or logarithm utility

function. (See [10, pp.175-177] or [11, Corollary 6.3]). On the other hand

the MEMM is corresponding to the exponential utility function. (See [7, §3]

or [11, §6.1]).

We remark here that, in the case of ESSMM, the power parameter of the

utility function depends on the parameter value h∗ of the Esscher transform.

We also remark that, in the case of MEMM, the relation of the MEMM to

the utility indifference price is known. (See [9, §4]. This result is generalized

by C. Stricker [23].)

3) The relative entropy is very popular in the field of information theory, and

it is called Kullback-Leibler Information Number(see [12, p.23]) or Kullback-

Leibler distance (see [5, p.18]). Therefore we can state that the MEMM is

the nearest equivalent martingale measure to the original probability P in

the sense of Kullback-Leibler distance. Recently the idea of minimal dis-

tance martingale measure is studied. In [11] it is mentioned that the relative

entropy is the typical example of the distance in their theory.

4) The large deviation theory is closely related to the minimum relative

entropy analysis, and the Sanov’s theorem or Sanov property is well-known

(see, e.g. [5, p.291-304] or [12, p.110-111]). This theorem says that the

MEMM is the most possible empirical probability measure of paths of price

process in the class of the equivalent martingale measures. In this sense the

MEMM should be considered to be the exceptional measure in the class of

all equivalent martingale measures.
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7 Concluding Remarks

As we have seen the previous sections, the MEMM has many good properties

and seems to be superior to ESSMM from the theoretical point of view. And

we can say that the [GLP & MEMM] model, which has been introduced in

[17], is a strong candidate for the incomplete market model.

What we should do next is to verify that the [GLP & MEMM] model

is very useful in the actual world. To do this we have to carry out the

calibration of this model. This task is now under progress. (See [18]).
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