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Abstract

The [GLP & MEMM] pricing model (= [Geometric Lévy Process

& Minimal Entropy Martingale Measure] pricing model) has been in-

troduced as a pricing model for the incomplete financial market. This

model has many good properties and is applicable to very wide classes

of underlying asset price processes including the geometric stable pro-

cesses. We explain those good properties and see several examples of

this model. After that we investigate the calibration problems of [GLP

& MEMM] model.
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1 Introduction

Geometric Lévy process pricing models are discussed in relation to the in-

complete markets.

The [Geometric Lévy Process & MEMM] pricing model was first intro-

duced in [30]. This model is one of the incomplete markets, and is based

on the geometric Lévy process and the minimal entropy martingale measure

(= MEMM).

In Section 2, 3 and 4 we explain this model and see the properties of

this model. In Section 5 we investigate the relations between the physical

world and the MEMM world. After that, in Section 6 we investigate the

calibration problem of our model.

2 Geometric Lévy process pricing models

We assume that the value process of bond is given by

Bt = exp{rt}, (2.1)

where r is a positive constant.

A pricing model consists of the following two parts:

(A) The price process St of the underlying asset.

(B) The rule to compute the prices of options.

For the part (A) we adopt the geometric Lévy processes, so the part (A)

is reduced to the selecting problem of a suitable class of the geometric Lévy

processes. For the second part (B) we adopt the martingale measure method,

so the part (B) is reduced to the selecting procedure of a suitable martingale

measure Q, and then the price of an option X is given by e−rT EQ[X]. Our

studies in this paper are carried on under such a framework.

2.1 Geometric Lévy processes

The price process St of a stock is assumed to be defined as what follows. We

suppose that a probability space (Ω,F , P ) and a filtration {Ft, 0 ≥ t ≥ T}
are given, and that the price process St = S0e

Zt of a stock is defined on this
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probability space and given in the form

St = S0e
Zt , 0 ≤ t ≤ T, (2.2)

where Zt is a Lévy process. We call such a process St the geometric Lévy

precess (GLP), and we denote the generating triplet of Zt by (σ2, ν(dx), b).

Throughout this paper we assume that Ft = σ(Ss, 0 ≤ s ≤ t) =

σ(Zs, 0 ≤ s ≤ t) and F = FT . A probability measure Q on (Ω,F) is called

an equivalent martingale measure of St if Q ∼ P and e−rtSt is (Ft, Q)-

martingale.

The price process St has the following another expression

St = S0E(Z̃)t (2.3)

where E(Z̃)t is the Doléans-Dade exponential (or stochastic exponential) of

Z̃t, and Z̃t is a Lévy process corresponding to the original Lévy process Zt.

The generating triplet of Z̃t, say (σ̃2, ν̃(dx), b̃), is

σ̃2 = σ2 (2.4)

ν̃(dx) = (ν ◦ J−1)(dx), J(x) = ex − 1, (2.5)

b̃ = b +
1
2
σ2 +

∫

{|x|≤1}
(ex − 1− x)ν(dx)

+
∫

{x<−1}
(ex − 1)ν(dx)−

∫

{log 2<x≤1}
(ex − 1)ν(dx). (2.6)

Remark 1 (i) It holds that supp ν̃ ⊂ (−1,∞).

(ii) If ν(dx) has the density n(x), then ν̃(dx) has the density ñ(x) and ñ(x)

is given by

ñ(x) =
1

1 + x
n(log(1 + x)). (2.7)

(iii) St satisfies the following stochastic differential equation

dSt = St−dZ̃t. (2.8)

(iv) The relations between Zt and Z̃t are more precisely discussed in [24],where

the stochastic logarithm of Xt, L(X)t, is defined and the following relations

are obtained.

Zt = log E(Z̃)t, Z̃t = L(eZ·)t (2.9)
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Many candidates for the suitable Lévy process have been proposed. We

give some examples below.

(1) Stable process (Mandelbrot, Fama(1963))

(2) Jump diffusion process (Merton(1973))

(3) Variance Gamma process (Madan(1990))

(4) Generalized Hyperbolic process (Eberlein(1995)

(5) CGMY process (Carr-Geman-Madam-Yor(2000))

(6) Normal inverse Gaussian process (Barndorff-Nielsen)

(7) finite moment log stable process(Carr-Wu(2003))

2.2 Equivalent martingale measures

Many candidates for the equivalent martingale measure have been proposed

as follows.

(1) Minimal Martingale Measure (MMM) (Föllmer-Schweizer(1991))

(2) Esscher Martingale Measure (ESMM) (Gerber-Shiu(1994), B-D-E-S(1996))

(3) Minimal Entropy Martingale Measure (MEMM) (Miyahara(1996), Frit-

telli(2000))

(4) Utility Martingale Measure (Utility-MM)

Among those equivalent martingale measures we put our focus on ESMM

and MEMM, and investigate the properties of them in section 3.

Remark 2 Sometimes Mean Correcting Martingale Measure (MCMM) is

used for jump-diffusion models.

3 Esscher Martingale Measure (ESMM) and Min-

imal Entropy Martingale Measure (MEMM)

3.1 Esscher transforms

The Esscher transform is very popular and thought to be very important

method in the actuary theory. (See [18]). Esscher has introduced the risk

function and the transformed risk function for the calculation of collective

risk. His idea has been developed in his work [13] and by many authors, and

played very important roles in the option pricing theory.
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Definition 1 Let R be a random variable and h be a constant. Then the

probability measure P
(ESS)
R,h defined by

dP
(ESS)
R,h

dP
|F =

ehR

E[ehR]
(3.1)

is called the Esscher transformed measure of P by the risk variable R and

the index h, and this measure transformation is called the Esscher transform

by the risk variable R and the index h.

Definition 2 Let Rt, 0 ≤ t ≤ T, be a stochastic process. Then the Esscher

transformed measure of P by the risk process Rt and the index process hs is

the probability measure P
(ESS)
R[0,T ],h

defined by

dP
(ESS)
R[0,T ],h[0,T ]

dP
|F =

e
∫ T

0
hsdRs

E[e
∫ T

0
hsdRs ]

(3.2)

This measure transformation is called the Esscher transform by the risk

process Rt and the index process hs.

Definition 3 In the above definitions, if the index index process is chosen

so that the P
(ESS)
R[0,T ],h[0,T ]

is a martingale measure of St, then P
(ESS)
R[0,T ],h[0,T ]

is

called the Esscher transformed martingale measure of St by the risk process

Rt, and it is denoted by P
(ESS)
R[0,T ]

or simply P
(ESS)
R· .

3.2 Esscher transformed martingale measures for geometric

Lévy processes

3.2.1 Simple return process and compound return process

When we give a certain risk process Rt, we obtain a corresponding Esscher

transformed martingale measure if it exists. As we have seen in the previous

section, the GLP has two kinds of representation such that

St = S0e
Zt = S0E(Z̃)t.

The processes Zt and Z̃t are candidates for the risk process.
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We shall see the economical meaning of them. For this purpose, we will

review the discrete time approximation of geometric Lévy processes.

Set

S
(n)
k = Sk/2n , k = 1, 2, . . . . (3.3)

According to the above two kinds of expression of St, we obtain two kinds

of approximation formula.

First one is

S
(n)
k = S0e

Z
(n)
k , k = 1, 2, . . . , (3.4)

where Z
(n)
k = Zk/2n .

Second approximation is

S
(n)
k = S0E(Y (n))k, k = 1, 2, . . . , (3.5)

where E(Y (n))k is the discrete time Doléans-Dade exponential of Y
(n)
k ,

E(Y (n))k =
k∏

j=1

(
1 + (Y (n)

j − Y
(n)
j−1)

)
(3.6)

and Y
(n)
k is defined from the following relations

eZ
(n)
k = E(Y (n))k =

k∏

j=1

(
1 + (Y (n)

j − Y
(n)
j−1)

)
, k = 1, 2, . . . . (3.7)

So we obtain

e4Z
(n)
k = eZ

(n)
k
−Z

(n)
k−1 =

(
1 + (Y (n)

k − Y
(n)
k−1)

)
= 1 +4Y

(n)
k . (3.8)

From this we obtain

4Y
(n)
k = e4Z

(n)
k − 1 =

S
(n)
k

S
(n)
k−1

− 1 =
4S

(n)
k

S
(n)
k−1

(3.9)

and we know that 4Y
(n)
k is the simple return process of S

(n)
k .

On the other hand, we obtain from the definition of 4Z
(n)
k

4Z
(n)
k = log S

(n)
k − log S

(n)
k−1 = log


1 +

4S
(n)
k

S
(n)
k−1


 , (3.10)

and we know that 4Z
(n)
k is the increment of log-returns and it is called the

compound return process of S
(n)
k .
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Remark 3 The terms ‘simple return’ and ‘compound return’ were intro-

duced in [1, p.294], and well known in economics. (See also [39].)

For t ∈ (k−1
2n , k

2n ) we define

Z
(n)
t = Z

(n)
k , Y

(n)
t = Y

(n)
k . (3.11)

It is easy to see that the process Z
(n)
t converges to the process Zt when n

goes to ∞.

On the other hand the process Y
(n)
t converges to the process Z̃t. As we

have seen, St satisfies the following stochastic differential equation

dSt = St−dZ̃t. (3.12)

From this it follows that

dZ̃t =
dSt

St−
. (3.13)

(For the justification of this formula, see [24].) Comparing the formulae (3.9)

and (3.13), we know that the process Y
(n)
t is the approximation process in

the procedure of solving the equation (3.13) for Z̃t. This fact means that

the process Y
(n)
t converges to the process Z̃t.

Based on the above observation, it is natural for us to give the following

definition.

Definition 4 The process Z̃t is called the simple return process of St, and

the process Zt is called the compound return process of St.

3.2.2 Two kinds of Esscher transformed martingale measures

Suppose that Zt is adopted as the risk process. Then, if the correspond-

ing Esscher transformed martingale measure P
(ESS)
Z[0,T ]

is well defined, then

it should be called the ‘compound return Esscher transformed martingale

measure’. This is the Gerber-Shiu’s Esscher martingale measure introduced

in [18], and the term ‘Esscher martingale measure’ is usually suggesting this

compound return Esscher transformed martingale measure P
(ESS)
Z[0,T ]

.

Next we consider the case where Z̃t is adopted as the risk process. If

the corresponding Esscher transformed martingale measure P
(ESS)

Z̃[0,T ]
exists,
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then it should be called the ‘simple return Esscher transformed martingale

measure’.

In [24] the following results have been obtained.

Proposition 1 ([24], Theorem 4.2) The compound return Esscher trans-

formed martingale measure P
(ESS)
Z[0,T ]

is unique if it exists.

Proposition 2 ([24], Theorem 4.5) The simple return Esscher transformed

martingale measure P
(ESS)

Z̃[0,T ]
is unique if it exists.

We will see here the relation between the Esscher transform and the

minimal entropy martingale measure (MEMM). We first give the definition

of the MEMM.

Definition 5 (minimal entropy martingale measure (MEMM)) If an

equivalent martingale measure P ∗ satisfies

H(P ∗|P ) ≤ H(Q|P ) ∀Q : equivalent martingale measure,

(3.14)

then P ∗ is called the minimal entropy martingale measure (MEMM) of St.

Where H(Q|P ) is the relative entropy of Q with respect to P

H(Q|P ) =





∫
Ω log[dQ

dP ]dQ, if Q ¿ P,

∞, otherwise,



 . (3.15)

From the proof of [17, Theorem 3.1] it follows that

Proposition 3 The simple return Esscher transformed martingale measure

P
(ESS)

Z̃[0,T ]
of St is the minimal entropy martingale measure (MEMM) of St.

Based on the above results, we give the following definition.

Definition 6 (i) The compound return Esscher transformed martingale mea-

sure P
(ESS)
Z[0,T ]

is called the ‘Esscher martingale measure (ESMM)’ and denoted

by P (ESMM).

(ii) The simple return Esscher transformed martingale measure P
(ESS)

Z̃[0,T ]
is

called the ‘minimal entropy martingale measure (MEMM)’ and denoted by

P ∗ (or P (MEMM)).
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Remark 4 For the jump-diffusion models, the Brownian motion can be

adopted as the risk process. In that case the corresponding Esscher trans-

formed martingale measure is the mean correcting martingale measure. (See

[38] or [7]).

3.3 Existence theorems of ESMM and MEMM for geometric

Lévy processes

The uniqueness theorems have been stated in the previous section. We next

study the Existence problem of Esscher transformed martingale measures.

3.3.1 Existence theorem of ESMM

We suppose that the expectations which appear in what follows exist. Then

the martingale condition for an Esscher transformed probability measure

Q = P
(ESS)
Z[0,T ],h

is

EQ[e−rS1] = e−rS0EQ[eZ1 ] = e−rS0
EP [e(h+1)Z1 ]

EP [ehZ1 ]
= S0. (3.16)

This condition is equal to the following condition

EP [e(h+1)Z1 ] = erEP [ehZ1 ], (3.17)

and this is also equivalent to the following expression,

φ(−i(h + 1)) = erφ(−ih), (3.18)

where φ(u) is the characteristic function of Z1 (φ(u) = EP [eiuZ1 ]).

To formulate the existence theorem, we set

f (ESMM)(h) = b + (
1
2

+ h)σ2 +
∫

{|x|≤1}

(
(ex − 1)ehx − x

)
ν(dx)

+
∫

{|x|>1}
(ex − 1)ehx ν(dx), (3.19)

Then we obtain

Theorem 1 (Existence condition for ESMM) If the equation

f (ESMM)(h) = r, (3.20)
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has a solution h∗, then the ESMM of St, P (ESMM), exists and

P (ESMM) = P
(ESS)
Z[0,T ],h

∗ = P
(ESS)
ZT ,h∗ (3.21)

The process Zt is also a Lévy process under P (ESMM) and the generating

triplet of Zt under P (ESMM), say (σ(ESMM)2, ν(ESMM)(dx), b(ESMM)), is

σ(ESMM)2 = σ2, (3.22)

ν(ESMM)(dx) = eh∗xν(dx), (3.23)

b(ESMM) = b + h∗σ2 +
∫

{|x|≤1}
x(eh∗x − 1)ν(dx). (3.24)

(Proof) The equation (5.5) is equivalent to the condition (5.3). Therefore

P
(ESS)
Z[0,T ],h

∗ is a martingale measure of St.

The characteristic function of Zt under P (ESMM) = P
(ESS)
Z[0,T ],h

∗ , φ
(ESMM)
t (u),

is by definition

φ
(ESMM)
t (u) = EP (ESMM) [eiuZt ] =

EP [eiuZteh∗ZT ]
EP [eh∗ZT ]

. (3.25)

And this is equal to

EP [e(iu+h∗)Zt

EP [eh∗Zt ]
=

φt(u− ih∗)
φt(−ih∗)

. (3.26)

By simple calculation we obtain

φ
(ESMM)
t (u) = exp

{
t
(
−1

2σ2 + i(b + h∗σ2 +
∫
{|x|≤1} x(eh∗x − 1)ν(dx))u

+
∫
{|x|≤1}(e

iux − 1− iux)eh∗xν(dx)

+
∫
{|x|>1}(e

iux − 1)eh∗xν(dx)
)}

. (3.27)

Using this formula, we can see that the martingale condition (3.18) is re-

duced to the equation 3.20). (Q.E.D.)

3.3.2 Existence theorem of MEMM

As we have mentioned in the previous section, the MEMM, P ∗, is the sim-

ple return Esscher transformed martingale measure. (P ∗ = P
(ESS)

Z̃[0,T ]
). The

existence theorem of the MEMM is obtained in [17].
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Set

f (MEMM)(θ) = b + (
1
2

+ θ)σ2 +
∫

{|x|≤1}

(
(ex − 1)eθ(ex−1) − x

)
ν(dx)

+
∫

{|x|>1}
(ex − 1)eθ(ex−1) ν(dx) (3.28)

Then the following result is obtained ([17, Theorem 3.1]).

Theorem 2 (Existence condition for MEMM) If the equation

f (MEMM)(θ) = r (3.29)

has a solution θ∗, then the MEMM of St, P ∗, exists and

P ∗ = P (MEMM) = P
(ESS)

Z̃[0,T ],θ
∗ = P

(ESS)

Z̃T ,θ∗
(3.30)

The process Zt is also a Lévy process under P ∗ and the generating triplet of

Zt under P ∗, say (σ∗2, ν∗(dx), b∗), is

σ∗2 = σ2, (3.31)

ν∗(dx) = eθ∗(ex−1)ν(dx), (3.32)

b∗ = b + θ∗σ2 +
∫

{|x|≤1}
x(eθ∗(ex−1) − 1)ν(dx). (3.33)

(Proof) The results of this theorem follows directly from the proof of [17,

Theorem 3.1]. (Q.E.D.)

Remark 5 (i) The function f (MEMM)(θ) is a non-decreasing function of

θ.

(ii) If St is integrable, then it holds that

E(St) = S0 exp(tf (MEMM)(0)). (3.34)

(iii) If the condition that f (MEMM)(0) > r is satisfied, then the solution θ∗

of (3.29) is negative (θ∗ < 0), when it exists. Such cases occur very often.
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3.4 Comparison of ESMM and MEMM

The ESMM and the MEMM are both obtained by Esscher transform, but

they have slightly different properties. We will survey the properties and

the differences of them.

(1) Corresponding risk process:

The risk process corresponding to the ESMM is the compound return

process, and the risk process corresponding to the MEMM is the simple

return process. The simple return process seems to be more essential in the

relation to the original process rather than the compound return process.

In this sense we can say that the MEMM is more reasonable martingale

measure than the ESMM.

(2) Existence condition:

As we have seen in the previous section, for the existence of ESMM,

P (ESMM), the following condition
∫

{|x|>1}
|(ex − 1)eh∗x| ν(dx) < ∞ (3.35)

is necessary. On the other hand, for the existence of MEMM, P ∗, the cor-

responding condition is
∫

{|x|>1}
|(ex − 1)eθ∗(ex−1)| ν(dx) < ∞. (3.36)

This condition is satisfied for wide class of Lévy measures, if θ∗ < 0. Namely,

the former condition is strictly stronger than the latter condition.

This means that the MEMM may be applied to the wider class of models

than the ESMM. This difference does work in the stable process cases. In

fact the MEMM method can be applied to the geometric stable model but

the ESMM method can not be applied to this same model.

(3) Corresponding utility function:

The ESMM is corresponding to power utility function or logarithm utility

function. (See [18, pp.175-177] or [19, Corollary 6.3]). On the other hand

the MEMM is corresponding to the exponential utility function. (See [16,

§3] or [19, §6.1]).
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We remark here that, in the case of ESMM, the power parameter of the

utility function depends on the parameter value h∗ of the Esscher transform.

We also remark that, in the case of MEMM, the relation of the MEMM to

the utility indifference price is known. (See [17, §4]. This result is generalized

by C. Stricker [40].)

(4) Properties special to MEMM:

a) Minimal distance to the original probability:

The relative entropy is very popular in the field of information the-

ory, and it is called Kullback-Leibler Information Number(see [21, p.23]) or

Kullback-Leibler distance (see [10, p.18]). Therefore we can state that the

MEMM is the nearest equivalent martingale measure to the original prob-

ability P in the sense of Kullback-Leibler distance. Recently the idea of

minimal distance martingale measure is studied. In [19] it is mentioned that

the relative entropy is the typical example of the distance in their theory.

b) Large deviation property:

The large deviation theory is closely related to the minimum relative

entropy analysis, and the Sanov’s theorem or Sanov property is well-known

(see, e.g. [10, p.291-304] or [21, p.110-111]). This theorem says that the

MEMM is the most possible empirical probability measure of paths of price

process in the class of the equivalent martingale measures. In this sense the

MEMM should be considered to be the exceptional measure in the class of

all equivalent martingale measures.

As the result of the above discussions, we can say that the MEMM has

many better properties than the ESMM in the theoretical sense.

4 [GLP & MEMM] Pricing Model

In this section we explain the [GLP & MEMM] pricing model and see ex-

amples of the model.
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4.1 Model

Now we can define the [GLP & MEMM] Pricing Model, which was first

introduced in [30]. The [GLP & MEMM] Pricing Model is such a model:

(A) The price process St is a geometric Lévy process (GLP).

(B) The price of an option X is defined to be e−rT EP ∗ [X], where P ∗ is the

MEMM.

Of course this model can be considered for the cases where the MEMM

exists.

4.2 Sufficient Conditions for the Existence of the MEMM

The existence problem of the MEMM of geometric Lévy processes has been

studied in [29], [6] and [30], and finally those results are generalized in [17]

as the following form.

Theorem 3 (Fujiwara-Miyahara [17, Theorem 3.1]) Suppose that the

following condition (C) holds

Condition (C) There exists θ∗ ∈ R which satisfies the following condi-

tions :

(C)1
∫
{x>1} exeθ∗(ex−1)ν(dx) < ∞, (4.1)

(C)2 b + (1
2 + θ∗)σ2 +

∫
{|x|>1}(e

x − 1)eθ∗(ex−1) ν(dx)

+
∫
{|x|≤1}

(
(ex − 1)eθ∗(ex−1) − x

)
ν(dx) = r. (4.2)

Then the probability measure P ∗ is well defined and it holds that

(i)(MEMM): P ∗ is the MEMM of St.

(ii)(Lévy process): Zt is also a Lévy process w.r.t. P ∗, and the generating

triplet (A∗, ν∗, b∗) of Zt under P ∗ is

A∗ = σ2, (4.3)

ν∗(dx) = eθ∗(ex−1)ν(dx), (4.4)

b∗ = b + θ∗σ2 +
∫

R\{0}
xI{|x|≤1}d(ν∗ − ν). (4.5)
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4.3 Examples of [GLP & MEMM] Pricing Model

In this section we see several examples of [GLP & MEMM] Pricing Models.

To do this, we have to check the existence of the MEMM, i.e. we have to

examine that the given geometric Lévy process St = S0 expZt satisfies the

Condition (C). Set

f(θ) = b + (
1
2

+ θ)σ2 +
∫

{|x|>1}
(ex − 1)eθ(ex−1) ν(dx)

+
∫

{|x|≤1}

(
(ex − 1)eθ(ex−1) − x

)
ν(dx). (4.6)

Then the condition (C)2 is equivalent to that θ∗ is the solution of

f(θ) = r. (4.7)

4.3.1 Geometric Variance Gamma Model

The Lévy measure of Variance Gamma process is of the following form (see

[25]).

ν(dx) = C
(
I{x<0} exp(−c1|x|) + I{x>0} exp(−c2|x|)

)
|x|−1dx, (4.8)

where C, c1, c2 are positive constants.

The following results are obtained (see[17] or [34]).

Proposition 4 (1) If c2 ≤ 1, then the equation f(θ) = r has a unique

solution θ∗, and the solution is negative.

(2) If c2 > 1 and f(0) ≥ r, then the equation f(θ) = r has a unique solution

θ∗, and the solution is non-positive.

(3) If c2 > 1 and f(0) < r, then the equation f(θ) = r has no solution.

4.3.2 Geometric CGMY Model

The Lévy measure of the CGMY process is

ν(dx) = C
(
I{x<0} exp(−G|x|) + I{x>0} exp(−M |x|)

)
|x|−(1+Y )dx, (4.9)

where C > 0, G ≥ 0,M ≥ 0, Y < 2 (see [2]). If Y ≤ 0, then G > 0 and

M > 0 are assumed. We mention here that the case Y = 0 is the VG
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process case, and the case G = M = 0 and 0 < Y < 2 is the symmetric

stable process case. In the sequel we assume that G,M > 0.

For this model the following results are obtained (see [34]).

Proposition 5 (1) If M ≤ 1, then the equation f(θ) = r has a unique

solution θ∗, and the solution is negative.

(2) If M > 1 and f(0) ≥ r, then the equation f(θ) = r has a unique solution

θ∗, and the solution is non-positive.

(3) If M > 1 and f(0) < r, then the equation f(θ) = r has no solution.

4.3.3 Geometric Stable Model

We consider the stable model. Suppose that Zt is a stable process and let

(0, ν(dx), b) be its generating triplet. The Lévy measure is

ν(dx) = c1I{x<0}|x|−(α+1)dx + c2I{x>0}|x|−(α+1)dx, (4.10)

where 0 < α < 2 and we assume that

c1 ≥ 0, c2 ≥ 0, c = c1 + c2 > 0. (4.11)

Proposition 6 Under the assumption c1, c2 > 0, the equation f(θ) = r has

a unique solution θ∗, and the solution θ∗ is negative.

Remark 6 Consider the case where c1, c2 > 0. Under the original measure

P , St, t > 0 is not integrable. But under the MEMM P ∗, any moments

EP ∗ [|St|k], k = 1, 2, . . . , of St are finite. This fact follows easily from the

result that θ∗ is negative, and this property is very useful for the study of

option pricing of this model.

4.4 Option Pricing and Volatility Smile/Smirk Properties

In order to apply the [GLP & MEMM] Pricing Models to the financial

problems, we have to establish the methods to compute the option prices.

Namely we have to compute the expectations EP ∗ [F (ω)], where F (ω) is a

functional of Lévy process.
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4.4.1 European Type Options

If a contingent claim C is depending only on the terminal value of the stock

price ST = S0e
ZT , then we can compute the price of C as what follows.

Let C = f(ST ) = f(S0e
ZT ) = F (ZT ), (F (z) = f(S0e

z)), and set

C(t, y) = EP ∗ [e−r(T−t)f(ST )|St = y] and C̃(t, z) = EP ∗ [e−r(T−t)F (ZT )|Zt =

z] = EP ∗ [e−r(T−t)f(ST )|St = S0e
z]. (Remark that C̃(t, z) = C(t, S0e

z).)

Since the process Zt is a Lévy process with the generating triplet (σ2, ν∗(dx), b∗),

C̃(t, z) satisfies the following equation under the assumption of the smooth-

ness of C̃(t, z).

−∂C̃(t, z)
∂t

=
1
2
σ2 ∂2C̃(t, z)

∂z2
+ b

∂C̃(t, z)
∂z

+
∫ ∞

−∞

(
C̃(t, z + z̃)− C̃(t, z)− z̃

∂C̃(t, z)
∂z

1{|z̃|<1}(z̃)

)
ν(dz̃)

−rC̃(t, z), 0 ≤ t < T, (4.12)

C̃(T, z) = F (z). (4.13)

Solving this equation, we obtain the option price C(0, S0) = C̃(0, 0).

4.4.2 FFT Method for European Call Options

The fast Fourier transform method (FFT method) is very useful for the

computation of option prices. We need to compute the such an expectation

EP ∗ [F (ω)], and in the case of European type options such type of expecta-

tions EP ∗ [G(ST )]. If we know the distribution function p∗T (z) of ZT under

P ∗, then EP ∗ [G(ST )] =
∫∞
−∞G(z)p∗T (z)dz. Lévy process is characterized by

the generating triplet, and the generating triplet is given explicitly in the

characteristic function. So we can assume that the characteristic function

φ∗T (u) of ZT under P ∗ is given and the density function p∗T (z) is obtained

as the inverse Fourier transform of φ∗T (u).

For the computer simulation of the theoretical prices of European call

options, the FFT method is very useful. Carr and Madan have introduced

their idea in [3], and their method has been improved by Cont and Tankov

in [8]. We rearrange their ideas in such a form that we can easily apply the

formula to our [GLP & MEMM] pricing models.
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The characteristic function φ∗t (u) of Zt under the MEMM P ∗ is

φ∗t (u) = φ∗Zt
(u) = EP ∗ [eiuZt ] = exp(ψ∗t (u)) = exp(tψ∗(u)), i =

√−1,

(4.14)

where ψ∗(u) = ψ∗1(u). Let µ∗t (dz) be the distribution of Zt under the MEMM

P ∗, and assume that µ∗t (dz) = p∗t (z)dz. Then

φ∗t (u) = φ∗Zt
(u) = EP ∗ [eiuZt ] =

∫ ∞

−∞
eiuzp∗t (z)dz, (4.15)

The price of European call option is

C(S0,K, T ) = e−rT EP ∗ [(ST −K)+] = e−rT
∫ ∞

−∞
(S0e

z −K)+p∗T (z)dz.

(4.16)

Set K/S0 = ek, and define c(k; S0, T ) = C(S0, S0e
k, T ). Then using (5.3)

c(k;S0, T ) = S0e
−rT

∫ ∞

−∞
(ez − ek)+p∗T (z)dz (4.17)

We introduce the so-called time value of option

c̃(k;S0, T ) = c(k; S0, T )− (S0 − e−rT K)+ = c(k; S0, T )− S0(1− ek−rT )+

(4.18)

and let ζ(v; S0, T ) be the Fourier transform of c̃(k; S0, T )

ζ(v; S0, T ) =
∫ ∞

−∞
eivkc̃(k; S0, T )dk. (4.19)

Using (5.5)

ζ(v;S0, T ) = S0e
−rT

∫ ∞

−∞
p∗T (z)dz

∫ rT

z
eivk(ek − ez)dk. (4.20)

and

ζ(v;S0, T ) = S0
e−rT φ∗T (v − i)− eivrT

iv(1 + iv)
. (4.21)

The characteristic function φ∗T (u) is computed directly from the generating

triplet (σ2, b∗, ν∗(dx)), so ζ(v; S0, T ) is obtained from the above formula.

Next, by (), c̃(k; S0, T ) is obtained by the inverse Fourier transform

c̃(k;S0, T ) =
1
2π

∫ ∞

−∞
e−ikvζ(v;S0, T )dv (4.22)

and

c(k; S0, T ) = c̃(k;S0, T ) + (S0 − e−rT K)+, K = S0e
k. (4.23)
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Finally we obtain the price of the European call option C(S0,K, T ) as

C(S0,K, T ) = c(log(K/S0);S0, T ) = c̃(log(K/S0);S0, T ) + (S0 − e−rT K)+.

(4.24)

4.4.3 Volatility Smile/Smirk Properties

The volatility smile/smirk properties are reported for many market prices

of options. This fact tells us that the Black-Scholes model is not necessarily

best model, and that we should study other models which may have the

volatility simile/smirk properties. It is known that the [GLP & MEMM]

models have those properties. (See [33]).

5 Physical World and MEMM World

The behavior of the price process St is governed by the original probability

P , and the movement of St is observable. This is the real world (=Physical

world).

On the other hand the price of an option X is computed as the expec-

tation e−rT EP ∗ [X], namely the process St is supposed to obey the MEMM

P ∗. This world is differ from the real world, and this world should be called

the imaginary world (=MEMM world).

5.1 From Physical World to MEMM World

Suppose that the price process St = S0e
Zt is given and the generating triplet

of Zt is (σ2, ν, b). Let θ∗ is the solution of f(θ) = r, where the function f(θ)

is defined by (4.6). Then, by Theorem 3 in §4.2, the generating triplet

(σ∗2, ν∗, b∗) of Zt under P ∗ is

σ∗2 = σ2, (5.1)

ν∗(dx) = eθ∗(ex−1)ν(dx), (5.2)

b∗ = b + θ∗σ2 +
∫

{|x|≤1}
xd(ν∗ − ν) (5.3)

= b + θ∗σ2 +
∫

{|x|≤1}
x

(
eθ∗(ex−1) − 1

)
ν(dx). (5.4)
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This triplet determines the prices of options in the framework of [GLP

& MEMM] pricing model.

Remark 7 The condition (C)2 for θ∗ (i.e. θ∗ is the solution of f(θ) = r)

is equivalent to the following condition (M)

(M) b∗−r+
1
2
σ∗2 +

∫

{|x|≤1}
(ex−1−x)ν∗(dx)+

∫

{|x|>1}
(ex−1)ν∗(dx) = 0.

(5.5)

We should notice that the θ∗ does not appear explicitly in this formula, and

that this formula is just the same condition that P ∗ is a martingale measure

of the price process St.

Concerning to the martingale condition for more general cases of semi-

martingales, see [39] where the triplet’s notation for semimartingale are

(B, C, ν). ( See also [22].)

5.2 From MEMM World to Physical World

We study the inverse problem of the previous subsection. Suppose that the

generating triplet (σ∗2, ν∗, b∗) of Zt under P ∗ is given. Since we assume that

P ∗ is martingale measure, the condition (M) is satisfied.

We try to construct a probability P̃ such that under P̃ the price process

St = S0e
Zt is geometric Lévy process and the MEMM of St = S0e

Zt with P̃

is P ∗.

Let θ∗ be any real number (it is usually supposed that θ∗ < 0) and set

σ̃2
θ∗ = σ∗2 (5.6)

ν̃θ∗(x) = e−θ∗(ex−1)ν∗(dx) (5.7)

b̃θ∗ = b∗ − θ∗σ2 +
∫

{|x|≤1}
x

(
e−θ∗(ex−1) − 1

)
ν∗(dx), (5.8)

where we assume that all integrals are converge. Then suppose that we could

construct the probability measure P̃θ∗ such that under P̃θ∗ the process Zt is

a Lévy process with the generating triplet (σ̃2
θ∗ , ν̃θ∗ , b̃θ∗).

It is easy to see that P ∗ is the MEMM of St = S0e
Zt with P̃θ∗ . We

remark here that there are many geometric Lévy processes whose MEMM

is just the same P ∗.
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5.3 Example: Geometric Stable Process Case

• Parameters in the physical world: (α, c1, c2, b), 0 < α < 2, c1, c2 ≥ 0,

c1 + c2 > 0, −∞ < b < ∞.

The triplet is (0, ν, b), and

ν(dx) =
c1I{x<0}(x) + c2I{x>0}(x)

|x|(α+1)
dx.

• Parameters in the MEMM world: (θ∗, α∗, c∗1, c∗2, b∗), θ∗ < 0, 0 < α∗ < 2,

c∗1, c∗2 ≥ 0, c∗1 + c∗2 > 0, −∞ < b∗ < ∞, where

ν∗(dx) = eθ∗(ex−1) c
∗
1I{x<0}(x) + c∗2I{x>0}(x)

|x|(α∗+1)
dx.

and the following martingale condition

Condition(M) : b∗ +
∫

{|x|≤1}
(ex − 1− x)ν∗(dx)

+
∫

{|x|>1}
(ex − 1)ν∗(dx) = r

must be satisfied. So, if we have given the values of (θ∗, α∗, c∗1, c∗2, ), then the

value of b∗ is determined by the above condition (M).

6 Calibration of [GLP & MEMM] pricing model

Suppose that the sequential data of the price process St of underlying asset

and the data of market prices of options. From these data, we have to select

a model which is most fitting to the given data. This is the calibration

problem. This problem shall be discussed in section 6.

6.1 Calibration problems

• Given data: the sequential data of the price process St, and the data of

market prices of options.

• Select the most fitting model to the given data.

To solve this problem, we have to take the following steps.

1) Estimation the price process of the underlying asset in the physical

world from the sequential data of it.
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2) Calculation of the MEMM from the estimated parameter, and com-

putation of the theoretical prices of options in the estimated MEMM world.

3) Analyzing the fitness of the theoretical prices to the market prices.

4) Determination of the most reasonable model.

6.2 Estimation of Lévy Processes in the Physical World

Usually this procedure is carried on under the restriction of the class of

Lévy processes, for example the stable process class, VG process class, etc.

Therefore the estimation problem of the process is reduced to the parameter

estimation problems.

There are many papers on this subject (see [31] for example).

Denote the estimated probability by P̂ , or equivalently, the estimated

generating triplet by (σ̂2, ν̂, b̂)).

6.3 Calculation of the theoretical option prices

Let P̂ be the estimated probability in the physical world, and let P̂ ∗ be the

corresponding MEMM. Then the theoretical price of option C is E
P̂ ∗ [Ce−rT ].

We denote this value by Ĉ∗.

6.4 Fitness analysis of the estimated model

Suppose that the data, ηl, l = 1, 2, . . . , L, of market prices of options Cl.

Then we define the fitting error of the model by

ε∗ =
1
L

∑

l

|Ĉl
∗ − ηl|
ηl

6.5 Determination of the most fitting model

As the results of the above procedure, if the value ε∗ is small then the fitness

of the model to the data is good.

The value ε∗ depends on the model, namely the selected class of the

process. We can conclude that the class whose fitness error is the smallest

is the best model.
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6.6 Diagram of the Procedure for the Calibration

The path space D[0, T ] is fixed.

Physical World MEMM World

St = S0e
Zt

(σ2, ν, b) under P Zt (σ∗2, ν∗, b∗) under P ∗

—————————————————————————————

Data: {ξj} (time series data)

Estimated: P̂

(σ̂2, ν̂, b̂)

θ̂∗

Transformed: P̂ ∗

(σ̂∗2 , ν̂∗, b̂∗)

Theoretical prices: Ĉl
∗

(European Call Options)

—————————————————————————————

Data: {ηl} (European Call Options)

ε∗ =
1
L

∑

l

|Ĉl
∗ − ηl|
ηl

6.7 Example: Geometric Stable Process Case

Parameter in the physical world

(α, c1, c2, b)

ν(dx) =
c1I{x<0}(x) + c2I{x>0}(x)

|x|(α+1)
dx.

Estimators (α̂, ĉ1, ĉ2, b̂)

ν̂(dx) =
ĉ1I{x<0}(x) + ĉ2I{x>0}(x)

|x|(α̂+1)
dx.
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θ̂∗ is determined by

b̂ +
∫

{|x|>1}
(ex − 1)eθ̂∗(ex−1) ν̂(dx)

+
∫

{|x|≤1}

(
(ex − 1)eθ̂∗(ex−1) − x

)
ν̂(dx) = r. (6.1)

The process which determines the theoretical option prices is

ν̂∗(dx) = eθ̂∗(ex−1) ĉ1I{x<0}(x) + ĉ2I{x>0}(x)

|x|(α̂+1)
dx.

b̂∗ = b̂ +
∫

R\{0}
xI{|x|≤1}d(ν̂∗ − ν̂).
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Model, Proceedings of Steklov Mathematical Institute, Vol.237(2002),

pp.176-191.

29



[35] Overhaus, M., Ferraris, A., Knudsen, T., Milward, R., Nguyen-Ngoc,

L. and Schindlmayr, G. (2002), Equity derivatives: Theory and Appli-

cations, Wiley.

[36] Rachev, S. and Mittnik, S. (2000), ”Stable Paretian Models in Finance”,

Wiley.
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