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Abstract

The [GLP(Geometric Lévy Process) & MEMM(Minimal Entropy Martingale Measure)]

pricing model was first introduced in [13] as one of the pricing models for the incomplete

market. We first explain the structure of this model, and next we investigate the volatility

smile/smirk properties of this model by the use of computer simulation method.

1 Introduction

It is well-known that the implied volatility surface has smile or smirk properties in the real

markets, and this property is called volatility smile/smirk property (or smile/skew property).

This fact suggests us that the construction of a new option pricing model, which possesses this

smile/smirk property, is inevitable.

Several kinds of models have been proposed and investigated. The [GLP & MEMM] pricing

model is one of them, and it is known that this model have many good properties as an option

pricing model for the incomplete market. (See [13] and [15]). In this paper we investigate the

volatility smile/smirk properties of the [GLP & MEMM] pricing models by the use of computer

simulation method.

In §2 we survey the volatility smile/smirk problems. In §3 we explain the [GLP & MEMM]

model briefly and in §4 we give several examples of it. In §5 we see that the [GLP & MEMM]

model possesses the volatility smile/smirk properties in various forms. Finally in §6 we discuss

the calibration results of of Nikkei 225 options by the [GLP & MEMM] models.

The results obtained in this paper show us that the [GLP & MEMM] model is a very strong

candidate for the new model which should have the volatility smile/smirk property and that

this model can be applied to the calibration problems.
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2 Volatility Smile/Smirk Problems

2.1 Historical Volatility and Implied Volatility for Black-Scholes Model

The Black-Scholes model is the special case of GLP model with no jump part, namely the process

is given by

St = S0e
(µ− 1

2
σ2)t+σWt , (2.1)

or in the form of stochastic differential equation

dSt = St(µdt + σdWt), (2.2)

where µ is called the drift parameter and σ is called the volatility parameter.

The theoretical B-S price of the European call option CK with the strike price K and the

fixed maturity T is given by the following formula

CK = S0Φ(d1)− e−rT KΦ(d2), (2.3)

where Φ(d) is the normal distribution function and

d1 =
log S0

K + (r + σ2

2 )T

σ
√

T
, d2 =

log S0
K + (r − σ2

2 )T

σ
√

T
= d1 − σ

√
T (2.4)

Under the above setting, the historical volatility of the process is the estimated value of σ

based on the sequential data of the price process St. We denote it by σ̂. On the other hand the

implied volatility is defined as what follows. Suppose that the market price of the European call

option with the strike K, say C
(m)
K , were given. Then the value of σ which satisfies the following

equation

S0Φ(d1)− e−rT KΦ(d2) = C
(m)
K , (2.5)

is the implied volatility, and this value is denoted by σ
(im)
K . We remark here that the implied

volatility σ
(im)
K depends on the strike value K, and on the contrary the historical volatility σ̂

does not depend on K.

2.2 Volatility Smile/Smirk Properties of Market Option Prices

We first consider the case where the market value of options obey to the Black-Scholes model, and

so the market price C
(m)
K is equal to the theoretical B-S price CK of (2.3). In this case the solution

of the equation (2.5) is equal to the original σ and it holds true that σ
(im)
K = σ = constant. This

means that if the market obeys exactly to the Black-Scholes model, then the implied volatility

σ
(im)
K should be equal to the historical volatility σ̂ (= σ).

But in the real world this is not true. It is well-known that the implied volatility is not equal

to the historical volatility, and the implied volatility curve σ
(im)
K is sometimes a convex function

of K, and sometimes the combination of convex part and concave part. These properties are

so-called volatility smile or smirk properties.

The Figure 1, 2, 3, and Table 1, 2 illustrate this situation, where a new variable moneyness

(= K
S0

) is introduced.
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Figure 1: Implied volatility surface for Nikkei 225 index options. (July-2002, time to maturity

is 20-day or more)

Figure 2: 07/02/2001, time to maturity = 30-

day, volatility smile

Figure 3: 18/01/2000, time to maturity = 52-

day, volatility smirk
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Table 1: Historical Volatility vs Implied Volatility

To consider the volatility smile/smirk properties of market option prices, we use the data of

Nikkei 225 call options traded at OSE (Osaka Stock Exchange), whose time to maturity is less

than or equal to 40-days and whose trading volume is more than 50. In this case, we have

obtained such a result that the Nikkei 225 call option has the volatility smile property for each

year.

err ratio: mean during 1-year of (implied volatility - historical volatility) / historical volatility.

The historical volatility is estimated from the log returns of recent 245 days.

1998 1999 2000 2001 2002 2003 2004

moneyness ≤ 0.9 1.2795 1.6432 1.7748 2.0539 2.2575 2.8476 3.0841

0.9 < moneyness ≤ 0.95 0.4660 0.4358 0.6954 0.5861 0.3623 0.3323 0.3922

0.95 < moneyness ≤ 1.05 0.0587 -0.0576 0.1467 0.1688 0.0711 0.0668 -0.0356

1.05 < moneyness ≤ 1.10 0.0494 -0.0746 0.1344 0.1670 0.1125 0.1348 0.0162

1.10 < moneyness 0.1148 -0.0250 0.2756 0.3477 0.2639 0.2949 0.1201

Table 2: Historical Volatility vs Implied Volatility

To consider the volatility smile/smirk properties of market option prices, we use the data of

Nikkei 225 call options traded at OSE (Osaka Stock Exchange), whose time to maturity is more

than 40-days and whose trading volume is more than 50. In this case, we have obtained such a

result that the Nikkei 225 call option has the volatility smirk property for each year.

err ratio: mean during 1-year of (implied volatility - historical volatility) / historical volatility.

The historical volatility is estimated from the log returns of recent 245 days.

1998 1999 2000 2001 2002 2003 2004

moneyness ≤ 0.9 0.0939 0.2004 0.3314 0.3468 0.4950 0.4169 0.4272

0.9 < moneyness ≤ 0.95 -0.0607 -0.0325 0.1202 0.0503 -0.0390 -0.0324 -0.0821

0.95 < moneyness ≤ 1.05 -0.0450 -0.1071 0.0542 0.0105 -0.0459 -0.0562 -0.1037

1.05 < moneyness ≤ 1.10 -0.0684 -0.1347 0.0253 -0.0205 -0.0649 -0.0545 -0.1103

1.10 < moneyness -0.0216 -0.1463 0.0865 -0.0208 -0.0461 -0.0209 -0.1042
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2.3 Volatility Smile/Smirk Properties of Models

Based on the above facts, new models, which have the volatility smile/smirk property, are

required. A pricing model is said to have the volatility smile property or volatility smirk property

if the implied volatility function for the theoretical option prices of that model has the volatility

smile or smirk property. Let C∗
K be the theoretical option price of the new model and let σ

(im)∗
K

be the solution of

S0Φ(d1)− e−rT KΦ(d2) = C∗
K . (2.6)

Then σ
(im)∗
K is the implied volatility related to the new model. If σ

(im)∗
K has the volatility smile

property, then the model is said to have the volatility smile property, and if σ
(im)∗
K has the

volatility smirk property, then the model is said to have the volatility smirk property.

3 [GLP & MEMM] Pricing Model

The [GLP & MEMM] Pricing Model is such a model:

(A) The price process St is a geometric Lévy process (GLP).

(B) The price of an option X is defined by e−rT EP ∗ [X], where P ∗ is the minimal entropy

martingale measure (MEMM).

This model was first introduced in [13], and the properties of this model are summarised in

[15].

3.1 Geometric Lévy Process (GLP)

The price process St of a stock is assumed to be defined as what follows. We suppose that a

probability space (Ω,F , P ) and a filtration {Ft, 0 ≥ t ≥ T} are given, and that the price process

St = S0e
Zt of a stock is defined on this probability space and given in the form

St = S0e
Zt , 0 ≤ t ≤ T, (3.1)

where Zt is a Lévy process. We call such a process St the geometric Lévy precess (GLP), and

we denote the generating triplet of Zt by (σ2
Z , νZ(dx), bZ) or simply by (σ2, ν(dx), b).

3.2 Minimal Entropy Martingale Measure (MEMM)

We first give the definition of the MEMM.

Definition 1 (minimal entropy martingale measure (MEMM)) If an equivalent martin-

gale measure P ∗ satisfies

H(P ∗|P ) ≤ H(Q|P ) ∀Q : equivalent martingale measure, (3.2)
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then P ∗ is called the minimal entropy martingale measure (MEMM) of St. Where H(Q|P ) is

the relative entropy of Q with respect to P

H(Q|P ) =

{ ∫
Ω log[dQ

dP ]dQ, if Q ¿ P,

∞, otherwise,

}
. (3.3)

3.3 Sufficient Conditions for the Existence of the MEMM

The existence problem of the MEMM of geometric Lévy processes has been studies in [12], [3]

and [13], and finally those results are generalized in [7] as the following form.

Theorem 1 (Fujiwara-Miyahara [7, Theorem 3.1]) Suppose that the following condition

(C) holds

Condition (C) There exists θ∗ ∈ R which satisfies the following conditions :

(C)1
∫
{x>1} exeθ∗(ex−1)ν(dx) < ∞, (3.4)

(C)2 b + (1
2 + θ∗)σ2 +

∫
{|x|>1}(e

x − 1)eθ∗(ex−1) ν(dx)

+
∫
{|x|≤1}

(
(ex − 1)eθ∗(ex−1) − x

)
ν(dx) = r. (3.5)

Then the probability measure P ∗ is well defined and it holds that

(i)(MEMM): P ∗ is the MEMM of St.

(ii)(Lévy process): Zt is also a Lévy process w.r.t. P ∗, and the generating triplet (A∗, ν∗, b∗) of

Zt under P ∗ is

A∗ = σ2, (3.6)

ν∗(dx) = eθ∗(ex−1)ν(dx), (3.7)

b∗ = b + θ∗σ2 +
∫

R\{0}
xI{|x|≤1}d(ν∗ − ν). (3.8)

3.4 Prices of European Call Options

We investigate the European call option. The price of European call option is

C(S0,K, T ) = e−rT EP ∗ [(ST −K)+]. (3.9)

It is known that this value is computed as follows.

The characteristic function φ∗t (u) of Zt under the MEMM P ∗is

φ∗t (u) = φ∗Zt
(u) = EP ∗ [eiuZt ] = exp(ψ∗t (u)) = exp(tψ∗(u)), i =

√−1, (3.10)

where ψ∗(u) = ψ∗1(u).

Set

ζ(v; S0, T ) = S0
e−rT φ∗T (v − i)− eivrT

iv(1 + iv)
(3.11)
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and

c̃(k;S0, T ) =
1
2π

∫ ∞

−∞
e−ikvζ(v; S0, T )dv (3.12)

Then the price of the European call option C(S0,K, T ) is computed as

C(S0,K, T ) = c̃(log(K/S0);S0, T ) + (S0 − e−rT K)+. (3.13)

(See [15].) This method is used in §5 for the computation of the theoretical option prices.

4 Examples of [GLP & MEMM] Pricing Model

In this section we see several examples of [GLP & MEMM] Pricing Models. To do this, we have

to check the existence of the MEMM, i.e. we have to examine that the given geometric Lévy

process St = S0 expZt satisfies the Condition (C). Set

f(θ) = b + (
1
2

+ θ)σ2 +
∫

{|x|>1}
(ex − 1)eθ(ex−1) ν(dx)

+
∫

{|x|≤1}

(
(ex − 1)eθ(ex−1) − x

)
ν(dx). (4.1)

Then the condition (C)2 is equivalent to that θ∗ is the solution of

f(θ) = r. (4.2)

4.1 [Geometric Stable Process & MEMM] Model

We consider the stable model. Suppose that Zt is a stable process and let (0, ν(dx), b) be its

generating triplet. The Lévy measure is

ν(dx) = c1I{x<0}|x|−(α+1)dx + c2I{x>0}|x|−(α+1)dx, (4.3)

where 0 < α < 2 and we assume that

c1 > 0, c2 > 0. (4.4)

It is shown that the equation (4.2) has a unique solution θ∗ and that θ∗ is negative. (See [7]

or [16].) So the geometric stable process model is an example of the [GLP & MEMM] Pricing

Model.

4.2 [Geometric CGMY Process & MEMM] Model

The Lévy measure of the CGMY process is

ν(dx) = C
(
I{x<0} exp(−G|x|) + I{x>0} exp(−M |x|)) |x|−(1+Y )dx, (4.5)

where C > 0, G ≥ 0,M ≥ 0, Y < 2 (see [1]). If Y ≤ 0, then G > 0 and M > 0 are assumed.

We mention here that the case Y = 0 is the VG process case, and the case G = M = 0 and

0 < Y < 2 is the symmetric stable process case. In the sequel we assume that G,M > 0.

For this model the following results are obtained (see [16]).
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Proposition 1 (1) If M ≤ 1, then the equation f(θ) = r has a unique solution θ∗, and the

solution is negative.

(2) If M > 1 and f(0) ≥ r, then the equation f(θ) = r has a unique solution θ∗, and the solution

is non-positive.

(3) If M > 1 and f(0) < r, then the equation f(θ) = r has no solution.

4.3 [Geometric Variance Gamma Process & MEMM] Model

The Lévy measure of Variance Gamma process is of the following form (see [8]).

ν(dx) = C
(
I{x<0} exp(−c1|x|) + I{x>0} exp(−c2|x|)

) |x|−1dx, (4.6)

where C, c1, c2 are positive constants.

The following results are obtained (see[7] or [16]).

Proposition 2 (1) If c2 ≤ 1, then the equation f(θ) = r has a unique solution θ∗, and the

solution is negative.

(2) If c2 > 1 and f(0) ≥ r, then the equation f(θ) = r has a unique solution θ∗, and the solution

is non-positive.

(3) If c2 > 1 and f(0) < r, then the equation f(θ) = r has no solution.

5 Volatility Smile/Smirk Properties of [GLP & MEMM] Mod-

els: Simulation Results.

For the models described in the previous sections we have carried on the simulation analysis,

and we have obtained many results which support that our model has the volatility smile/smirk

property. The following figures of implied surface are typical examples where the volatility

smile/smirk property can be seen.
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5.1 [Geometric Stable Process & MEMM] Model

(a) b = −0.4 (b) b = 0 (c) b = 0.6

Figure 4: [G-Stable Process & MEMM] Model (α = 1.2, c1 = 0.2, c2 = 0.2)

(a) α = 0.8 (b) α = 1.4 (c) α = 1.8

Figure 5: [G-Stable Process & MEMM] Model (b = 0, c1 = 0.01, c2 = 0.01)

(a) c1 = 0.005, c2 = 0.095 (b) c1 = 0.095, c2 = 0.005 (c) c1 = 0.1, c2 = 0.1

Figure 6: [G-Stable Process & MEMM] Model (b = 0, α = 1.2)
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5.2 [Geometric CGMY Process & MEMM] Model

(a) b = −0.1 (b) b = 0 (c) b = 0.2

Figure 7: [G-CGMY Process & MEMM] Model (C = 0.05, G = 0.5,M = 0.5, Y = 1.2)

(a) C = 0.05 (b) C = 0.1 (c) C = 0.3

Figure 8: [G-CGMY Process & MEMM] Model (b = 0, G = 0.5,M = 0.5, Y = 1.2)

(a) G = 5, M = 0.05 (b) G = 0.05, M = 0.05 (c) G = 0.05, M = 3

Figure 9: [G-CGMY Process & MEMM] Model (b = 0, C = 0.05, Y = 1.2)

10



(a) Y = 0.5 (b) Y = 1 (c) Y = 1.5

Figure 10: [G-CGMY Process & MEMM] Model (b = 0, C = 0.05, G = 0.5,M = 0.5)

5.3 [Geometric Variance Gamma Process & MEMM] Model

(a) b0 = −0.4 (b) b0 = 0 (c) b0 = 0.6

Figure 11: [G-VG Process & MEMM] Model (C = 5, c1 = 15, c2 = 0.5)

(a) C = 5 (b) C = 10 (c) C = 20

Figure 12: [G-VG Process & MEMM] Model (b0 = 0, c1 = 15, c2 = 15)
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(a) c1 = 15, c2 = 15 (b) c1 = 28, c2 = 2 (c) c1 = 10, c2 = 10

Figure 13: [G-VG Process & MEMM] Model (b0 = 0, C = 10)

6 Implied Volatility Level Calibration of Nikkei225 Index Op-

tion by [GLP & MEMM] Models

Let {σ(im)
j } be the set of implied volatilities obtained in the market, and let {σ(im)∗

j (Θ)} be

the set of the corresponding implied volatilities of the model with the parameter Θ. Then the

implied volatility level calibration is to solve the following minimization problem.

min
Θ

∑

j

|σ(im)∗
j (Θ)− σ

(im)
j |2.

(a) 07/02/2001, time to maturity = 30-day (b) 18/01/2000, time to maturity = 52-day

Figure 14: the implied volatility curve of [Geometric VG Process & MEMM] Model and Nikkei

225 call option.
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(a) 07/02/2001, time to maturity = 30-day (b) 18/01/2000, time to maturity = 52-day

Figure 15: the implied volatility curve of [Geometric CGMY Process & MEMM] Model and

Nikkei 225 call option.

(a) 07/02/2001, time to maturity = 30-day (b) 18/01/2000, time to maturity = 52-day

Figure 16: the implied volatility curve of [Geometric Stable Process & MEMM] Model and

Nikkei 225 call option.
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7 Concluding Remarks

We have only done the implied volatility level calibration. For the selection of suitable model,

we have to do the option price level calibration and the fitness analysis. These analyses are the

subjects for us to do next.
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