
Martingale measures for
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Abstract

The equivalent martingale measures for the geometric Lévy pro-

cesses are investigated. They are separated to two groups. One is the

group of martingale measures which are obtained by Esscher trans-

form. The other one is such group that are obtained as the minimal

distance martingale measures. We try to obtain the explicit forms of

the martingale measures, and we compare the properties of the mar-

tingale measures to each other. Those discussions help for us to do the

fitness analysis of the pricing models.

1 Introduction

The well-known Black-Scholes model

St = S0e
(µ− 1

2
σ2)t+σWt (1.1)

or equivalently

dSt = St (µdt + σdWt) (1.2)

is a very good model for the option pricing, even so this model has many week

points, for example the gap between the historical volatility and the implied

volatility, fat tail property and asymmetry property of the distribution of
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the log returns, etc. And so we need to introduce new models which may

illustrate those properties.

The geometric Lévy process model is one of them. This model is an in-

complete market model, so there are many equivalent martingale measures.

As the first candidate for the equivalent martingale measure the minimal

martingale measure was introduced in [13]. After that several candidates

have been offered, for example the Esscher martingale measure([18]), the

variance optimal martingale measure ([41]), the minimal entropy martin-

gale measure ([30]) and etc.

In this paper we survey the properties of those martingale measures

for the geometric Lévy processes. At first in §2 we explain the geometric

Lévy process model. Next in §3 we review the martingale measures for the

geometric Lévy processes, and in §4 we compare the martingale measures

to each other. Finally in §5 we give the concluding remarks.

2 Geometric Lévy process

Suppose that a probability space (Ω,F , P ) and a filtration {Ft, 0 ≤ t ≤ T}
are given. A geometric Lévy precess (GLP) is given by

St = S0e
Zt (2.1)

where Zt is a Lévy process with the generating triplet (σ2, ν(dx), b). The

price process St has the following another expression

St = S0E(Z̃)t, (2.2)

where E(Z̃)t is the Doléans-Dade exponential of Z̃t, and the generating

triplet of Z̃t, say (σ̃2, ν̃(dx), b̃), is

σ̃2 = σ2 (2.3)

ν̃(dx) = (ν ◦ J−1)(dx), J(x) = ex − 1, (2.4)

( i.e. ν̃(A) =
∫

1A(ex − 1)ν(dx) )

b̃ = b +
1
2
σ2 +

∫ (
(ex − 1)1{|ex−1|≤1} − x1{|x≤1}

)
ν(dx). (2.5)
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Remark 1 (i) St satisfies

dSt = St−dZ̃t. (2.6)

(ii) It holds that supp ν̃ ⊂ (−1,∞).

(iii) If ν(dx) has the density n(x), then ν̃(dx) has the density ñ(x) and ñ(x)

is given by

ñ(x) =
1

1 + x
n(log(1 + x)). (2.7)

• Candidates for the suitable Lévy process.

As the candidate of the Lévy process for the underlying price process,

what follow are proposed.

(1) Stable process (Mandelbrot, Fama(1963))

(2) Jump diffusion process (Merton(1973))

(3) Variance Gamma process (Madan(1990))

(4) Generalized Hyperbolic process (Eberlein(1995)

(5) CGMY process (Carr-Geman-Madam-Yor(2000))

(6) Normal inverse Gaussian process (Barndorff-Nielsen)

(7) finite moment log stable process(Carr-Wu(2003))

3 Equivalent martingale measures for GLP

3.1 Candidates for the suitable equivalent martingale mea-

sure

Since the geometric Lévy process model permits many equivalent martingale

measures, we have to select one martingale measure for the option pricing.

The candidates are as follows.

(1) Minimal Martingale Measure (MMM) (Föllmer-Schweizer(1991))

(2) Variance Optimal Martingale Measure (VOMM)(Schweizer(1995))

(3) Mean Correcting Martingale Measure (MCMM)

(4) Esscher Martingale Measure (ESMM) (Gerber-Shiu(1994), B-D-E-S(1996))

(5) Minimal Entropy Martingale Measure (MEMM) (Miyahara(1996), Frit-

telli(2000))

(6) Utility Based Martingale Measure (U-MM)
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3.2 Classification of Martingale measures for geometric Lévy

processes

The martingale measures listed in the above are separated to two groups.

The one is the Esscher transformed martingale measures group, and the

other is the minimal distance martingale measures group.

The martingale measures which belong to Esscher transformed martin-

gale measures group are

(3) Mean Correcting Martingale Measure (MCMM),

(4) Esscher Martingale Measure,

(5) Minimal Entropy Martingale Measure (MEMM).

(See Esscher(’32), Gerber-Shiu(’94), B-D-E-S(’96), Kallsen-Shiryaev(’02),

etc.)

The martingale measures which belong to the minimal distance martin-

gale measures group are

(2) Variance Optimal Martingale Measure (VOMM),

(5) Minimal Entropy Martingale Measure (MEMM),

(6) Utility Based Martingale Measure (U-MM).

(See He-Pearson(’91), Goll-Rüschendorf(’01), Frittelli(’02), Kallsen(’02), etc.)

3.3 Esscher transformed martingale measures

3.3.1 Esscher transform and Esscher transformed martingale mea-

sure

Definition 1 Let R be a risk variable and h be a constant. Then the prob-

ability measure P
(ESS)
R,h defined by

dP
(ESS)
R,h

dP
|F =

ehR

E[ehR]
(3.1)

is called the Esscher transformed measure of P by the random variable R

and h, and this measure transformation is called the Esscher transform by

the random variable R and h.

Definition 2 Let Rt, 0 ≤ t ≤ T, be a risk process. Then the Esscher trans-

formed measure of P by the process Rt and a constant h is the probability
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measure P
(ESS)
R[0,T ],h

, which is defined by

dP
(ESS)
R[0,T ],h

dP
|F =

ehRT

E[ehRT ]
(3.2)

( Remark that P
(ESS)
R[0,T ],h

= P
(ESS)
RT ,h . )

and this measure transformation is called the Esscher transform by the pro-

cess Rt and a constant h.

Definition 3 In the above definition, if the constant h is chosen so that the

P
(ESS)
R[0,T ],h

is a martingale measure of St, then P
(ESS)
R[0,T ],h

is called the Esscher

transformed martingale measure of St by the process Rt, and it is denoted

by P
(ESS)
R[0,T ]

or P
(ESS)
RT

.

3.3.2 Corresponding Risk Processes

When we give a certain risk process Rt, we obtain a corresponding Esscher

transformed martingale measure if it exists. As we have seen in the previous

section, the GLP has two kinds of representation such that

St = S0e
Zt = S0E(Z̃)t.

The processes Zt and Z̃t are candidates for the risk process.

Definition 4 The process Z̃t is called the simple return process of St, and

the process Zt is called the compound return process of St.

Remark 2 The terms ‘simple return’ and ‘compound return’ were intro-

duced in B-D-E-S(’96) p.294.

3.3.3 Examples of Esscher transformed martingale measure

(1) ESMM

Definition 5 If the Esscher transformed martingale measure P
(ESS)
ZT

is well-

defined, then this measure is called the Compound Return Esscher trans-

formed martingale measure or the Esscher Martingale Measure (ESMM),

and is denoted by P (ESMM).
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(2) MEMM

Definition 6 If the Esscher transformed martingale measure P
(ESS)

Z̃T
is well-

defined, then this measure is called the Simple Return Esscher transformed

martingale measure, or based on the following Proposition, the Minimal En-

tropy Martingale Measure (MEMM), and is denoted by P (MEMM) or P ∗.

Definition 7 (MEMM) If an equivalent martingale measure P ∗ satisfies

H(P ∗|P ) ≤ H(Q|P ) ∀Q : EMM, (3.3)

then P ∗ is called the minimal entropy martingale measure (MEMM) of St.

Where H(Q|P ) is the relative entropy of Q with respect to P

H(Q|P ) =





∫
Ω log[dQ

dP ]dQ, if Q ¿ P,

∞, otherwise,



 . (3.4)

From the proof of Fujiwara-Miyahara(’03) Theorem 3.1, it follows that

Proposition 1 The simple return Esscher transformed martingale measure

P
(ESS)

Z̃[0,T ]
of St is the minimal entropy martingale measure (MEMM) of St.

(3) MCMM

Definition 8 Suppose σ > 0, and let σWt be the diffusion part of Zt. If the

Esscher transformed martingale measure P
(ESS)
WT

is well-defined, then this

measure is called the Mean Correcting Martingale Measure (MCMM), and

is denoted by P (MCMM).

3.4 Minimal Distance Martingale Measures

3.4.1 Utility functions and Duality

The problem to obtain the minimax martingale measure for a given utility

function u(x) is equivalent to the problem to obtain the minimal distance

martingale measure for the dual distance function u∗(y) defined by

u∗(y) = sup
x

(u(x)− xy) . (3.5)
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The minimal distance martingale for the distance function F (x) means

the following minimization problem.

E[F
(

dP ∗

dP

)
] = min

Q:EMM

{
E[F

(
dQ

dP

)
]
}

. (3.6)

Here are examples of distance functions and the corresponding minimal

distance martingale measures (See [1] or [19]):

1) F (x) = x log x, minimal relative entropy martingale measure (MEMM)

2) F (x) = − log x, minimal reverse relative entropy MM

3) F (x) = |x− 1|, minimal total variation MM

4) F (x) = −√x, minimal Hellinger distance MM

5) F (x) = |x− 1|p, minimal p-moment MM

6) F (x) = |x−1|2, minimal variance MM (variance optimal MM (VOMM))

3.4.2 Existence of Minimal Distance Martingale measures

The existence conditions in the general form have been studied in Frit-

telli(’02) and Gundel(’05).

3.4.3 Minimal Distance MM for Geometric Lévy Processes

We will see the explicit form of minimal distance MM for Geometric Lévy

processes in the case of VOMM. (Jeanblanc-Miyahara [23])

Theorem 1 (i) For the existence of the VOMM, it is sufficient that the

following equation for (f, g(x), µ) has a solution.

f = µσ (3.7)

(eg(x) − 1) = µ(ex − 1) (3.8)

µσ2 +
∫

(µ(ex − 1)2 + (ex − 1)− x1|x|≤1)ν(dx) = β. (3.9)

(ii) When the above equation has a solution (f∗, g∗(x), µ∗), then the mar-

tingale measure QLT (f∗,g∗) is the VOMM. (dQLT (f∗,g∗)
dP = LT (f∗, g∗))

where

µ∗ =
β − ∫

(ex − 1− x1|x|≤1)ν(dx)
σ2 +

∫
(ex − 1)2ν(dx)

. (3.10)
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Remark 3 (i) Explicit form of L∗t is

L∗t = exp
(

f∗Wt −
(

1
2
(f∗)2 +

∫
(eg∗(x) − 1− g∗(x)1|x|≤1)ν(dx)

)
t

+
∫ t ∫

{|x|>1}
g∗(x)N(ds, dx) +

∫ t ∫

{|x≤1}
g∗(x) Ñ(ds, dx)

)
. (3.11)

(ii) The Lévy measure of Xt under P (V OMM) is

ν(V OMM)(dx) = (1 + µ∗(ex − 1)) ν(dx) (3.12)

The σ(V OMM) is σ(V OMM) = σ, and the b(V OMM) is determined from the

martingale condition. [23]

The proof of this theorem is based on Kunita’s representation theorem for

positive martingale processes (See [26]). The idea of the proof of the above

theorem can be applied to the power function distance, and we can obtain

the similar explicit form for the power function distance. (See [23]).

3.5 Summary of the Explicit Forms of MM for Geometric

Lévy Processes

Here is a list of the Lévy measures for Zt (if exist) under the martingale

measures.

(1) MEMM:

ν(MEMM)(dx) = eθ∗(ex−1)ν(dx) (3.13)

where θ∗ is the solution of

b + (
1
2

+ θ)σ2 +
∫ ∞

−∞

(
(ex − 1)eθ(ex−1) − x1{|x|≤1}(x)

)
ν(dx) = r. (3.14)

Usually θ∗ < 0

(2) ESMM:

ν(ESMM)(dx) = eh∗xν(dx) (3.15)

where h∗ is the solution of

b + (
1
2

+ h)σ2 +
∫ ∞

−∞

(
(ex − 1)ehx − x1{|x|≤1}

)
ν(dx) = r. (3.16)

(3) MCMM:

ν(MCMM)(dx) = ν(dx) (3.17)

8



(4) VOMM:

ν(V OMM)(dx) = (1 + µ∗(ex − 1)) ν(dx) (3.18)

where

µ∗ =
β − ∫

(ex − 1− x1|x|≤1)ν(dx)
σ2 +

∫
(ex − 1)2ν(dx)

. (3.19)

(5) Power-function MM:

Distance function: F (x) = axb, where (a > 0, b > 1) or (a < 0, b < 1).

ν(PfMM)(dx) = eg∗(x)ν(dx) (3.20)

where g∗ is given by

b(e(b−1)g∗(x) − 1) = µ∗(ex − 1) (3.21)

and µ∗ is the solution of

µσ2

b(b− 1)
+

∫ (
(1 +

µ(ex − 1)
b

)
1

b−1 (ex − 1)− x1|x|≤1

)
ν(dx) = β (3.22)

4 Comparison of MEMM and others

0) Law of Zt under MMs given above

They are all Lévy processes.

1) Corresponding risk process

• MEMM: Simple return process Z̃t

• ESMM: Compound return process Zt

• MCMM: Wiener process Wt

2) Conditions for the Existence

• MEMM P (MEMM):
∫

{|x|>1}
|(ex − 1)|eθ∗(ex−1) ν(dx) < ∞. (4.1)

This condition is satisfied for wide class of Lévy measures, if θ∗ < 0.

• ESMM P (ESMM):
∫

{|x|>1}
|ex − 1| eh∗xν(dx) < ∞ (4.2)
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The MEMM may be applied to the wider class of models than the

ESMM. The difference is clear in the stable process cases. In fact, the

MEMM method can be applied to the geometric stable model, but the

ESMM method can not be applied to this model.

• MCMM P (MCMM):

σ > 0, and
∫

{|x|>1}
| (ex − 1) |ν(dx) < ∞ (4.3)

• VOMM P (V OMM):
∫

(ex − 1)2ν(dx) < ∞. (4.4)

3) Corresponding utility functions

• The MEMM is corresponding to the exponential utility function. (Frit-

telli(’00) or Goll-Rüschendorf(’01)).

• The ESMM is corresponding to power utility function or logarithm

utility function. (Gerber-Shiu(’94) or Goll-Rüschendorf(’01)). But the cor-

responding power parameter depends on the process.

Remark 4 In the case of MEMM, the relation of the MEMM to the utility

indifference price is known. (See Fujiwara-Miyahara(’03, §4), etc.). This

result is generalized by C. Stricker(′04).

4) Minimal distance to the original probability

• The relative entropy is called Kullback-Leibler Information Number(see

Ihara(’93, p.23) or Kullback-Leibler distance (see Cover-Thomas(’91, p.18)

in the field of information theory. We can state that the MEMM is the

nearest equivalent martingale measure to the original probability P in the

sense of Kullback-Leibler distance.

• The VOMM is the nearest equivalent martingale measure to the orig-

inal probability P in the sense of variance.

• The ESMM is the nearest equivalent martingale measure to the orig-

inal probability P in the sense of power function metric. But the minimal

distance MM for the power function is not always ESMM.

5) Large deviation property of MEMM: The large deviation theory is

closely related to the minimum relative entropy analysis, and the Sanov’s
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theorem or Sanov property is well-known (see, e.g. Cover-Thomas(’91 pp.291-

304) or Ihara(’93, pp.110-111)). This theorem results to saying that the

MEMM is the most possible empirical probability measure of paths of price

process in the class of the equivalent martingale measures.

5 Concluding Remarks

5.1 Volatility Smile/Smirk Property

It is shown that the geometric Lévy process models have the volatility

smile/smirk property. (See [35]).

5.2 Methods for Option Pricing

(1) Risk Neutral Pricing

If the market is efficient enough, the risk neutral pricing (i.e. martingale

measure pricing) is reasonable.

(2) Utility indifference Pricing

For the pricing of derivatives based on the non-tradable asset, the utility

indifference pricing is effective. This pricing has strong relations with risk

measures.

5.3 Fitness analysis of models

We ask a question, ”Which model is most fitting to the empirical data?”,

and we have to do the fitness analysis of models.

In this paper we have obtained the explicit forms of equivalent martingale

measures for the geometric Lévy process models. So we have now finished

the preparation for the numerical analysis and the empirical analysis of the

geometric Lévy process models.
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