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ABSTRACT

Weconsider the incomplete assets markets. Then there are many equivalent
martingale measures. Amongthem, the probability measure, which minimizes
the relative entropy with respect to the original probability measure P. has a
special meaning. Wecall such a measurethe canonical martingale measure. The
canonical martingale measureis. if exists, unique. We investigate the existence
problem of canonical martingale measures.

1. Introduction

In the theory of the financial market, equivalent martingale measures are often
discussed (Harrison and Pliska 1981, 1983). Suppose that the price process of stocks is
the stochastic process S = (S(t). t > 0) defined on some probability space (£2. T, P).
Under the assumption of the absence of arbitrage opportunities, there is an equivalent
probability measure Q ~ P such that S is a martingale under Q.(We call such a
measure Q the equivalent S-martingale measure.)

If the market is complete, the equivalent martingale measure Q is determined
uniquely. But, if the market is incomplete, there are many equivalent martingale
measures. In such a case, the problem to analyze the mechanism of determining the
prices of contingent claims remains to be an open problem. An answer to the above
problem is adopting the minimization principle of relative entropy as the criterion of
reasonable martingale measure.

The equivalent S-martingale measure P*. which has the minimum relative entropy
w.r.t. P, is called the canonical martingale measure of the price process S (Definition
2). It may be natural to think that the theoretical price (= value) of a contingent
claim X is equal to the expectation Ep*[X] of X with respect to P*. in regard of
Sanov's Lemma of the large deviation theory. The canonical martingale measure of
the price process 5 is unique, if it exists (Remark 1). Therefore, the existence of
canonical martingale measures is the problem to be investigated.

Our first main result is Theorem 3 in •˜2, which asserts that if the price process
S is bounded, then there exists the unique canonical martingale measure. In •˜3
we investigate the case where the price process S is given by stochastic differential
equations(S.D.E.). The second main theorem is Theorem 4, which asserts that in
the SDE case there exists the unique canonical martingale measure P*, and that
the measure P* is given by Girsanov's transformation of measure from the original
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measure P. Our results are obtained without the assumption of square integrability
of Radon-Nikodym derivatives of S martingale measures with respect to the original
measure P (see Remark 4).

2. Preliminaries and General Results

Let (fi,J7, P) be a probability space and let {Tt,t > 0} be an increasing family
of sub (7-fields of T. where we assume that Tt is right continuous and includes all
P-negligible sets in T. Suppose that the price process S = (S(t),t > 0), S(t) =
(5ri(t), 5f2(f): •E•E•E, -?«"(£)) à¬ RK, is given as a K-dimensional ^-adapted stochastic
process denned on (f2,.F, P).

Under the above framework, wedefine V(S) as the set of all equivalent S-martingale
measures, namely the set of all probability Q on (Q,T) such that (S(t),t > 0) is
(Ft, <2)-martingale and Q ~ P (absolutely continuous with each other), and we de-
fine M(S) as the set of all S-martingale measures which is absolutely continuous
with respect to P. From the definitions of P(S) and M.(S), the following lemma is
obtained easily.

Lemma 1 V(S) and M.(S) are convex subsets of M.\(=the set of all probability
measures on (fi, F)).

We denote the relative entropy of Q with respect to P by H(Q\P), and the
variation distance of Qx and Q2 by ||Qi - ^lUar-

Definition 1 For the convex subset S of Mi, we set H(£\P) = infQ6£H(Q\P). If
this infimum is attained at a point in S, then the point is called minimum point in £.

Remark 1 If a minimum point exists, then it is unique. This fact follows from the
strict convexity of the relative entropy.

The basic properties of the relative entropy are described in the following lemmas.

Lemma 2 (Csiszar 1984) Let£ be a convex subset of M\, and let Qn,n= 1.2,...,
be a sequence from £ such that lim,!-^ H(Qn\P) = H(£\P). Then

(1) there is a probability measure Q^ such that lim n^^WQn - QoolUar = 0.

wmQ^KHWP).
Lemma 3 (Csiszar 1975, Lemma2.1) Let Qq,Qi <C P and set Qa = aQi +
(1-a)Q0 for a,0<a<1. Then

(1) H(Qa\P) > H(QQ\P),\/a,0 < a < 1 « ff(Qi|P) > //(QilQo) + H(Q0\P).
(BJSoiq,0<a0 < 1, suchthatH{Qa\P) > H{Qao\P), Va,0<a< 1

*=>H(Qa\P) = H(Qa\Qao)+H(Qao\P), Va.O<a< 1.

Lemma 4 Suppose that Qq,Q\ < P, Q\ ~ P , and H(Qi\P) < oo. Andset
Qa=olQx+(1-a)Q0 for a,0<a< I.Then

(1) there exist a unique a0,0 < a0 < 1, such that H(Qao\P) = info<a<i H(Qa\P).
(2) Qa0 satisfies the condition that Qao ~ P.
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(Proof) Since the set {Qa, 0 < a < 1} is a convex closed subset of.Mi, the result
(1) follows from Lemma2.

The proof of (2) is as follows.
Case 1. Ifa0 = 1, then (2) is trivial.
Case 2. If a0 = 0, then by Lemma 3 (1) it holds that oo > H{Qi\P) > H{Q1\Q0)+

H(Q0\P). Therefore it follows that /f(Qi|Q0) < oo and so Qi < QQ. Using the
assumptions that Q\ ~ P and Qo "^ P å we know that Qo ~ f•E

Case 3. If 0 < aQ < 1, then by Lemma3 (2), oo > H(Qi\P) = H{Qx\Qao)+
H(Qao\P). So we obtain the result in the same way as case 2. (Q.E.D.)

Using the above lemmas, wecan prove the following theorems.
Theorem 1 If H{V(S)\P) < oo, then H(V{S)\P)å = H{M{S)\P).

(Proof) From the definitions of V{S) and M{S) , the inequality H{P(S)\P) >
H(M(S)\P) is obvious.

Let {Qn,n = 1,2,...} be a sequence in M(S) such that H(Qn\P) | H{M(S)\P),
and let Q be a point of ^(S) such that H(Q\P) < oo. Then we can apply Lemma 4
to Qn and Q, and we know that there is a point Q'n on the segment QnQ such that
Q; ~ P and tf(Q;|P) < /7(Qn|P).

Since SA(S) is convex, it follows that Q'n (E J\A(S). and from Q'n ~ P it follows
that Q^ G P{S). Therefore we have proved that

H{V{S)\P) < lirninfH(Q'n\P) < lirninf H{Qn\P) - //(A4(s)|P)

and the proof is completed.(Q.E.D.)

Corollary 1 If H(P(S)\P) < oo an<L V(S) has the minimum point, then that point
is also the minimum point of M(S).

Theorem 2 Suppose that H(P(S)\P) < oo. If there exists the minimum point in
M(S), then the point is also the minimum point in V{S).

(Proof) Let Q be the minimum point in M(S), and let Q be a point in V(S)
such that H(Q\P) < oo. Applying Lemma 4 to the segment QQ, we know that there

exists a point Q' in QQ such that H(Q'\P) < H(Q\P) and Q' ~ P. On the other
hand, from the convexity of M(S) it follows that Q' E Ai(S). Thus we have obtained
the results that Q' e V(S) and

H{Q'\P) < H{Q\P) = H{M(S)\P) < H{P{S)\P).

From the uniqueness of the minimum point, it follows that Q = Q', and the proof is
completed. (Q.E.D.)

Definition 2 // the ninimum point in V(S) exists, then that point is called the
canonical martingale measure of S.

Theorem 3 Assume that the price process S is bounded and assume that H(P(S)\P) <
oo. Then the canonical martingale measure P* exists and is unique.
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(Proof) If we prove that M(S) has the minimum point, the result of theorem
follows from Theorem 2. Let Qn à¬ JA(S) be a sequence such that H(Qn\P) [
H(M(S)\P), and put qn(u) = ^-(lj). From Lemma2 it follows that there exists a

probability measure Q such that Qn -åºQ in variation (||Qn - Q\\var -> 0). and

H{Q\P) < liminf H{Qn\P) = H{M{S)\P)

It is well-known (see Ihara 1993, Theorem 1.5.3) that

\\Qm - Qn\\var = Ja \qm - qn\dP(uj)

So it follows that Q < P and

\\Qn~QWvar=J |?»~?|^(w)-0, wk&re . dQ
q=dF-

Weshall show next that Q 6 M(S). Since Qn 6 M.(S), it holds that for any
.Ft-measurable bounded function g(u>) and for s > t

EQn[Ss9} = EQn[EQJS3g\Ft}} = EQn[EQn[Sa\T3]g\ = EQn[St9]
=( StgqndP-> / StgqdP= E^[Stg] (n-oo)

where weuse the assumption of boundedness of St. On the other hand it is obvious
that

EQn\Ssg] = I SsgqndP-> / S.gqdP= E^[Sag] (n-> oo)

Therefore Ee[^^j = En[5't5] for any bounded Ft -measurable function g[uj). This

proves that Q is a S-martingale measure. The fact that Q à¬ V{M) follows from
Theorem 2. and the proof is complete. (Q.E.D.)

By Theorem 3, the existence of the canonical martingale measure in the case that
the price process is bounded is assured. This may be enough in the practical point
of view, but is not enough in the theoretical point of view. In the next section we
investigate a case where the price process is not bounded.

3. The Case of Stochastic Differential Equation

In this section we investigate the case where the price process St is given by
stochastic differential equations(SDE). Let W(t) = (Wi(t),... ,Wd{t)) be the d-
dimensional (!Ft, P) Wiener process, and assume that Tt = T^ - cr{W(s), 0 < s < t}
and T = J^. Let the price process S(t) = (5i(t),.... Sxit)) satisfy the following
stochastic differential equations

dSk(t) = bk(t,S(t))dt+£akj(t,S(t))dWj(t), k= l,...,K (1)
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= l,...,ff (2)

or equivalently the following stochastic integral equations

Sk{t) =Sk{0)+ fbk(s,S(s))ds+Y, I'a^SMdWjis), k=
JO j._1 yo

where we assume that bk and a,kj,k = 1,2,...,K.j - 1,2,...,d, satisfy the global

Lipschitz condition, so that the above equations have a unique solution.
Theorem 4 Suppose that the price process S(t) - (Si(t),... , 5JK-(f)) is given by (1)
or (2) and assume that H(P(S)\P) < oo. Then there exists the canonical martingale
measure P*, i.e. P* is the minimum point of V(S), and P* is obtained by Girsanov
transformation from P. The canonical martingale measure P* is also the minimum
point of M(S).

For the proof of this theorem, we need some preparations. Let Q be a probability
measure on the space ($7, J7) such that Q <C P. Then the following facts (a)-(f) are
well-known (see Liptzer and Shiryaev 1974, for example).

(a)Set q = ^ and q(t) - ElqlTt]. Then q(t) is a (not necessarily square integrable)

(Tt, P) martingale.
(b) q(t) has the following representation (Liptzer and Shiryaev p. 171 Theorem

5.8)

q{t) = l+Jz fg]{s)dWj{Sl P(fT\g(s)\2ds= fTJ2\gj(s)\2ds < oc) = l

(c)Set

7,(0 = if q(t)->0

otherwise

Then the process W{t) = (Wi(t)i •E•E•E, W^(0) defined by

wpi(t) = wi(t) - jrl7i(a)da

is a d-dimensional (^i, Q)-Wiener process (Liptzer and Shiryaev p. 225 Theorem 6.2).
(d)Using the notations of (c), we obtain the following formula

dSk(t) = bk(t1S(t))dt+ ZUa'>i(t>s(t))dWM
={h(t,S(t))+ZUa^S(t)hj(t)}dt+ZUa*J&5(0)^(0.

in the sense of probability measure Q. Therefore we know that, since we have assumed
the Lipschitz continuity of a,kj, the necessary and sufficient condition for Q to be a
S-martingale measure is that

d
h{t,S{t))+Y,akj{t,S(t))'yj(t)=O (dtxdQa.s.), k=lt...,K.
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Fromthe definition of 7j(f),j = 1,... ,d, the above condition is equivalent to

d

h(t,S{t))q{t)+J2akj{t,S{t))gj{t) =0 {dt xdQa.s.), k= l,...,K.

In the case of Q ~ P, the following results hold true.
(e) If Q ~ P. then q(t) > 0 and Q is obtained by Girsanov's transformation

from P, namely, q(t) has the following representation (Liptzer and Shiryaev p. 171
Theorem 5.9)

q(t) = expiflllMdWjis) - \ f^{s^ds}
JO j=1 /JO J=1

(f)If Q ~ F, then the necessary and sufficient condition for Q to be a S-martingale
measure is that

bk(t,S(t))+J2akj(t,5(i))7i(0=0 (dtxdPa.s.), k= l,...,K.

or equivalently

M*,5'(0M<)+Ea*i(«.'Sr('))ai(«) =0 (dtxdPa.s.), k= l,...,K.
3=1

The following lemmma is essential for the proof of Theorem 4.
Lemma 5 Let {qn{u),n= 1,2,...} be a sequence in L1(f2,T,P) such that qn(uj) >
0 and !^qn{oj)dP - 1, and assume that

Qn-*q(asn-*oo) inLx(fi,J",P).

Set qn(t) - E[qn\Tt\ and q(t) = Efgl^i], and using the fact (b), we represent qn(t)
and q(t) in the following form

qn{t) - l +J: ft9{f\s)dWi{s)y P(fT\9W(s)\2ds = fTJ2\9f(s)\2ds < oo) = l

q(t) = l+ib [t9J(s)dWj(S), P(fT\g(s)\2ds= fTJ2\9j(s)\2ds <oo)= l
j=iJ0 J0 Jo j=i

Then it holds that

9j ~~*9j (as n~^°°) in measure w.r.t. dtxdP, j=1,2,...,d.
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(Proof) Let r/ be the stopping time defined by

T,W =

{
M{t <T;qn(t) >1}
T, if {t<T;qn(t)>l}=

and set qn,i{t) = qn(t A r/" ). Since qnyi{t) is square integrable, it has the following

represent at ion
qn,i(t) = l + i: ft9^l)(s)dWj(s)

and it holds that

gj -æfgj (as I-æfoo) in measure w.r.t. dtxdP, j=1....,d.

Moreover, as Liptser-Shiryaev showed (see Liptser-Shiryaev 1974, pp. 168-169), we

can assume that

gf\t.u)=g^+k)(t,u>), k=0,1,..., if sup|gB(«,w)|</, j=1,...,d. (3)

u<t

In the same way, setting

Tl= {
inf{i<T: q(t) >1}
T, if {t<T;q(t)>l}=$

and qi(t) = q(t A fj). we know that 17; is square integrable and that

and we can assume that

gj{t,uj)=gf+k)(t,uj), k=0,1,..., if sup\q{u,u)\</, j=l,...,d.

u<t

We next prove that g^ ' converges to g^ in probability as I -> 00 and that this

convergence is uniform in n,n = 1,2.... ,. In fact, from the definition of gj ' and (3)
weobtain for any e > 0

Pfsup^ l^u) -*}"'(«)I > e) <

<

<

<

^(suPu<tQn{u) > I)
1
I

I
I

/sup{qn(u); u<t}>l Qn(t)dP

E [qn]
M, M = suVnE[qn]

(4)

where we use the martingale inequaliy. In the same way weknow that for any e > 0
it holds that

P(sap\gf(v) -gi{u)\ > e) < \E[q]
u<t I

(5)
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From (4) and (5) it follows that for any e > 0 and 6 > 0 there exists a consant
/0 = /0(e;S) such that for any / > Iq it holds that

P(snp\gf)(u)-gf(u)\>e)<6, 71=1,2,..., j=1,2,...,d, (6)

P (snp\gf\u)-gj(u)\ >e) <6, j=l,2,...,d. (7)
and

P(.

Next we will prove that, when I is fixed, pjn' converges to g^ ' in probability as
n ->oo. From the definitions of {qr^;??. = 1, 2,...} and qt, they are square ntegrable
and qn<i -> qi (as?i -> oo ) in L2(df x dP). In the square integrable case, it is well-
known that g^ -* gV (as n -» oo) in L2(dtxdP) follows from qn>i -» ^ (as n -»•Eoo)

in L2(df x dP).Therefore we can result that for any fixed I,I = 1,2,...,

^W)_>^^^ (as n_^qq)in measure w.r.t. dtxdP, j=1,2,...,d. (8)

Using the above results, we next prove that g^ -æf^- (as n -> oo) in measure
w.r.t. dt x dP. We set dp= dt x dP on [0,T] x Q. From (6) and (7) it felloes that
for any e > 0 and f> > O.there exists a consant Zo such that for any / > /0 it holds that

> ,'), »<
n =l,2,..., j=l,2,...,d,

>e}) <T6,
(9)

and

/z({(t,a;)e[O,r]xn; \gf\t,u)-gj(t.,uj)\ >e})<T6, j=1,2,...,d. (10)

We here fix an /,/ > /0, and then using (8) we can take a number n0 = no(e,6,1) such
that for any n > no

/i({(t)w)e[0)r]xn; |9f'')(f;a;)-^)(t,u;)|>e})<6) j=1,2,...,d. (ll)

Using the results (9),(10) and (ll), we obtain such a result that for any e > 0 and
6 > 0 we can choose constants /0 = ^o(ei^) and n0 - no(e,6,l),I > l0 such that for

any n>Hq

^ \9T -93\ >3e) < /x(|5Jn)-

< T6+6+

M)| 9y-'\ >e)+n{\gf»-gf\ >e)+̂\$T6=
(2T+1)6, j=l,2,...,d.

                     .0

9j\ ><0

Thus we have proved that g^ -> g~j in measure w.r.t. dt x dP. (Q.E.D.)

Remark 2 Karatzas, Ocone and Li 1991 discussed similar problems. If we could
prove that qn G D^i and that qn converges in D^i (with their notations), then we
could apply their results. But it is not clear that qn G Di i.
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(Proof of Theorem 4) Let Qn, 1, 2,..., be a sequence from M{S) such that H{Qn\P) I
H{M{S)\P). By Theorem 1, we can assume that Qn G V{S). Set qn(u) = %-. Just

as we have seen in the proof of Theorem 3, we know that there exists a probability
measure Q such that Q < P and Qn -> Q in variation, and

H(Q\P) < lirninfH(Qn\P) = H(V(S)\P) - H(M(S)\P) (12)

and that
\\Qn~QWvar=J \*»~?lrf^(W) ~>°- where - dQ

q=dF-

In the followings, we use the notations {qn,9j ,Tj ,Wj ) or (q,Pj,7j,Wj), for

Qn or Q, corresponding to the notations (<?, <7j,7j, Wj) used in (a)-(f) for Q.

Since Qn G V{S). it follows from (f) that qn and gf1 satisfy the following equations

bk(t,S(t))qn(t)+Ylakj(t,S(t))gf(t) =O (Pa.s.), k= l,...,K. (13)

By Lemma 5 it holds that

lim <tJ- =9j(in measure w.r.t. dtxdP), j=1,...,d (14)

Therefore, taking a subsequence if necessary, from (13) and (14) we have obtained
the following result

d
bk{t,S{t))q{t)+YJakj{^S{t))gj{t) ^Q (dt xdPa.8.), k= \,...,K.

j=i

Since Q <C P. from this formula and (d) it follows that Q is S-martingale measure.
Thus wehave proved that Q à¬ M(S), and that Q is the minimum point in M{S) by
(12). The fact that Q is also the minimum point in P(S) follows from Theorem 2.
The fact that Q is obtained by Girsanov's transformation from the original probability
measure P, is follows from (e). The proof is complete. (Q.E.D.)

Remark 3 Follmer and Schweizer 1990 discussed the similar problem in the space
V2{S) - {Q E V(S);S is square integrable w.r.t. Q and ^ G L2(P)} which is

a subspace of V(S) and A't(S'). They introduced the concept of minimal martin-
gale measure(mMM) in V2{S), and gave the sufficient conditions for the existence
of mMM.We can verify that, when the system (1) is of simple form (for example

b(t, S) and a(t, S) are linear in S), the mMM is identified with canonical martingale
measure. So we come to the following conjecture.
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Conjecture. If mMM exists, then mMMis identified with the canonical maltingale

measure.

4. Concluding Remarks

In this paper we have investigated the existence problem of canonical martingale
measures. All our results are obtained without the assumption of the square inte-
grability of Radon-Nikodym derivative -^. So our methods can be applied to many
more cases. And if it is necessary to extend the class of martingale measures to the
class of local martingale measures, then it may be possible to apply our methods to
that of local martingale measures.

In the case of SDE discussed in section 3, if d < K, then the equivalent S-
martingale measure is unique in general. Therefore, in order that the assets markets
are incomplete, it must hold that d > K. On the other hand, if the price process
S(t) is a jump process, then the equivalent S-martingale measures are not unique
(without the assumption of d < K) in general. So it may be an interesting problem
to apply our methods to such processes. This is our next subject to study.
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