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A  Welfare Criterion for the LCP Model

The second-order Taylor expansion of Uy = ﬁCtlfa - ﬁNtH‘p with Ugy =0
is given by:
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with @ = 1—¢ (1 — 7). Because we assume ¥ = 0, this equality can be rewritten
as:

U —-U 1 5

TtJCC = 73 ["5f+2dt+(‘7+</’> W)+ A+ o)y s — 1+ ¢) 2 a
1+¢)n? .

+%sf —(1+¢) nstat] +tip.+o (||§\|3) . (A1)

Likewise, we have:
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We define W)'op, = Wi (Wrep: + Wicp,) with W = [{ch_g and W) =
Y=U  Plugging Eqgs.(?7) and (A.2) into the definition of W}V yields:
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where we use the fact that a}V = %jggtw and al' = %gﬁ to derive the

second line.
Combining Egs.(13) and (14) in the text and integrating yields:
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Log-linearizing this equality, we have:
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Note that D; = 01 %th) =E, (%ﬁh)) and we define Dy, = fl (P‘(h)) and

Dy, = (?}E?)i . Similar to Eq.(A.4), we have:
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Combining Eqgs.(A.4) and (A.5) yields:
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with InPP =

b = 1 (InP; (h) + InP, (f)) and InP/* = 1 (InP; (h) + InP; (f)). Note
that fo lnPth = E; (lnPth) = InP; because Generic households CPI is given
analogously to Eq.(4) in the text.

The definition of the price index implies:
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In addition, we have:
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Plugging Eq.(A.7) into Eq.(A.8) yields:
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As with Eq.(A.9), we have:
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Eqgs.(A.9) and (A.10) imply as follows:
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Plugging Eq.(A.11) into Eq.(A.6) yields:
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Plugging this into the final line in Eq.(A.13) yields:
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As shown in Chapter 6, Woodford[1], summing up over time then yields:
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Plugging Eq.(A.14) into Summed up Eq.(A.12) over time yields:
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Plugging Eq.(A.15) and its counterpart in country F into this equality yields:
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which is consistent with Eq.(48) in the text.

B Gains from Policy Cooperation

In this section, we calculate gains from policy cooperation following Monacelli[2].

B.1 Gains from Policy Cooperation under PCP
Combining Eq.(47) in the text and its counterpart in country F' yields:
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Plugging Eqs.(28), (41) and their counterparts in country F' into the defini-
tion of the deviation of the TOT from its efficient level z; yields:
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Combining the equality in line 2 in page 25 in the text and its counterpart
in country F' is given by:
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Combining Eqs.(B.3) and (B.4) yields:
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Plugging Eq.(B.5) into Eq.(B.2) yields:
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Under the cooperative setting, Lagrangean is given by:
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FONCs are given by:
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Combining the first and the second equality in Eq.(B.7) yields:
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Plugging Eq.(B.9) into the third equality in Eq.(B.7), we have:
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Plugging Eq.(B.10) into Eq.(B.1) yields:
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Tterating this yields:
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Plugging Eq.(B.12) into Eq.(B.10), we have:
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The fourth equality in Eq.(B.7) can be rewritten as:
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Iterating this forward, we have:
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Plugging Eq.(B.16) into Eq.(B.15), we have:
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Plugging Egs.(B.13), (B.17), (B.18) and (B.19) into Eq.(50) in the text
yields:
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Under the non-cooperative setting, Lagrangean is given by:
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FONCs are given by:
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Alternative Lagrangean is given by:
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Plugging the first equality in Eq.(B.21) into Eq.(B.1), we have:
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iterating this forward yields:
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Plugging the second equality in Eq.(B.21) into Eq.(B.2), we have:
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iterating this forward yields:
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Plugging Egs.(B.22) and (B.23) into Eq.(B.21), we have:
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Egs.(B.22), (B.23) and (B.24) imply as follows:
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Plugging the third and the fourth equalities in Eq.(B.25) into Eq.(B.5), we have:
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Plugging Eqgs.(B.25) and (B.26) into Eq.(50) in the text, we have:

2 (o4 )2
rpgy, - XD (g gy (B.27)

Plugging Eqs.(B.20) and (B.27) into LYSE — LW, yields:
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which is consistent with the equality in line 4 in page 37 in the text.

B.2 Gains from Policy Cooperation under LCP
Combining Eq.(35) and its counterpart in country F is given by
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Under the cooperative setting, Lagrangean is given by:
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Combinig the first to the third equalities in Eq.(B.30) yields:
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Plugging Eq.(B.30) into Eq.(B.28) yields:
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Iterating this forward yields:
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Plugging Eq.(B.33) into Eq.(B.31) yields:
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Tterating Eq.(B.29) forward, we have:
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Combinig Egs.(B.34) and (B.35), we obtain:
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Plugging the last equality in Eqs.(B.30), (B.33) and (B.36) into Eq.(49) in
the text, we have:
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Under the non-cooperative setting, Lagrangean is given by:
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Combining Eqs.(B.39) and (B.40), we have:
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Iterating this forward yields:
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Plugging Eq.(B.43) into Eq.(B.41) yields:
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Iterating Eq.(B.29) yields:
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Combining Eqs.(B.44) and (B.45) yields:
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Plugging Eq.(B.41) into Eq.(B.5) yields:

2= 2ot Tocr (B.47)
nws

Plugging Eqs.(B.43), (B.46) and (B.47) into Eq.(49) in the text, we have:
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Plugging Egs.(B.38) and (B.48) into LYSY — LV yields:
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which is consistent with the equality in line 13 in page 37 in the text.
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