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A Details on Derivation of the Model

A.1 Households

Preferences of the representative household in countries H and F' are given by:
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where Cf denotes consumption in country F', N = Np + N§;; denotes hours
of work in country F, Np; = ff Npi (f)df and N, = ff N3+ (f)df denote
hours of work to produce tradables produced in country F' and nontradables
produced in country F', respectively. The first equality in Eq.(A.1) is Eq.(1) in
the text.

More precisely, private consumption is a composite index defined by:
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[ S Cuy ()7 dh} and Cp; = [ J2Cri () df} , where the index
{h, f} denotes a variable that is specific to agents h and f, C%, denotes the
consumption index for tradables in country F, and C},, denotes an index of
consumption across the nontradable goods produced in country F. The first
equality in Eq.(A.2) is Eq.(2) in the text.



A sequence of budget constraints is given by:
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with Py, = [ Py (h)l_gdh} T Ppy = [ [2Pey () df} 7 and Py, =
{fol Py (h)'° dh} ™7 where Py = [ff P, N’ df} ™7 denotes the price

index of nontradables produced in country F' and S; denotes the lump sum
taxes in country F'.

The optimal allocation of any given expenditure within each category of
goods yields the following demand functions:
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These equalities imply that [, Pe; (k) Crr s (h) dh = P Criy, [¢ Pry (f) Cry (f) df =
1 2 px * * *
PF,tCF,ta fO P_/\/',t (h) C_/\/’t (h) dh = PN,tCN,t and fl PN,t (f) CN,t (f) df = PN,tCN,t’
Total consumption expenditures by households in countries H and F' are
given by:
Py Cxy+ PriCry+ Pnv i Crny = PGy,
PF,tCJ*F,t + PH,tCJ*f{,t + PK/,th\/,t = Pt*Ct*'
Combining Eq.(A.3) and these equalities, we obtain:
D +WiNy+ Sy > PCy +EiQ¢ 411D}, 4,
DY + Wi N; +8; > P/C;+EQ 41D}y, (A.5)

where the first equality in Eq.(A.5) is Eq.(3) in the text.
Combining Eq.(A.4) and aggregators, we have:
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The first, second, fifth and sixth equalities in Eq.(A.6) are Eq. (5 ) in the text.
CPIs are given by:
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where P} denotes the CPI in country F. The first equality in Eq.(A.7) is Eq.(4)
in the text.

The representative household maximizes Eq.(A.1) subject to Eq.(A.5). Op-
timality conditions are given by:
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The RHS of Eq.(A.8) is an intertemporal optimality condition in country F,
whereas the RHS of Eq.(A.9) is an intratemporal optimality condition in country
F. The LHS of both Eqgs.(A.8) and (A.9) are Eq.(6) in the text.

Combining and iterating Eq.(A.8) with an initial condition, we have the
following optimal risk-sharing condition:

Cy = 907 Qs (A.10)

which is Eq.(7) in the text. When C_; = C*; = P_; = P*; = 1, we have
9 =1

A.2 Firms

Each producer can use a linear technology to produce a differentiated good as
follows:

Yui(h) =AutNui(h), 5 Yni(h)=Ax Ny (h),
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A} denote stochastic productivity shifters associated with tradables and non-
tradables produced in country F, respectively. The first equalities in Eq.(A.11)
are Eq.(8) in the text.

Using Dixit—Stiglitz aggregators, Eq.(A.11) can be rewritten as:
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Under Calvo—Yun-style price-setting behavior, the pricing rules are given by:
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where Ppyt and ]5;/7,5 are the prices chosen by firms when they obtain the chance
to change prices associated with tradables and nontradables produced in country
F', respectively.

The maximization problems faced by firms are as follows:
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The FONCs are as follows:
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The first and the second equalities in Eq.(A.14) are Eq.(9) in the text.
We define the real marginal costs as:
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Combining the first equalities of Eqgs.(A.14) and (A.15) yields:
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Combining the definition of the marginal cost and Eq.(A.9), we have:
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We define the country-wide real marginal cost as:
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A.3 Local Government

The government expenditure index is given by:
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where Gr; and G}, denote government expenditure on tradables and non-
tradables produced in country F', respectively. For simplicity, we assume that
government purchases are fully allocated to a domestically produced good. For
any given level of public consumption, the government allocates expenditures
across goods in order to minimize total cost. This yields the following set of
government demand schedules, analogous to those associated with private con-
sumption.
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The flow government budget constraints are given by:
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where B{'* = P;B} denote the nominal risk-free bonds issued by local gov-
ernment in country F' and B; denote the real risk-free bonds issued by local
government in country F', respectively.

Combining the definition of prices and output, we have:
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Substituting Eqgs.(A.18) and (A.20) into Eq.(A.19), we have:
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These equalities can be rewritten as:
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Eq.(A.21) yields the consolidated government budget constraint which is
given by:

. The first equality in Eq.(A.21) is Eq.(10) in the
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The appropriate transversality conditions for government assets are given
by:
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which appears in footnote 11 in the text.
Starting from Eq.(A.22) with the appropriate transversality condition, the
resulting consolidated intertemporal budget constraint can be written as:
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A.4 Market Clearing

Market clearing conditions for tradables are given by:

YH,t (h) - CH,t (h) + C}k{,t (h) + GH,t (h) B
Yei(f) = Cri(f) +Cri(f) +Grye(f). (A.24)

The first equality in Eq.(A.24) is the LHS of Eq.(11) in the text.
As for nontradables, equilibrium requires that:

Yivi(h) = Cnpi(h)+Gue(h),
Yie(f) = Che(f)+Gr(f)- (A.25)
The first equality in Eq.(A.25) is the RHS of Eq.(11) in the text.
The market in country H for tradables clears when domestic demand is given

by Eq.(A.24). As for nontradables, equilibrium requires Eq.(A.25).
Using Eqgs.(A.4), (A.10) and (A.18), Eq.(A.24) can be rewritten as:
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where we use the fact that C} = g—:, which is derived from Eq.(A.10). Com-
bining these equalities and Egs.(A.4), (A.10) and (A.18), Eq.(A.24) can be

rewritten as:
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Using Eqgs.(A.4), (A.10) and (A.18), Eq.(A.25) can be rewritten as:
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Combining these equalities and Egs.(A.4), (A.10) and (A.18), Eq.(A.25) can be

rewritten as:
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Eq.(A.26) implies that:
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where T, = PFt denotes the terms of trade (TOT).
Eq.(A.27) implies that:
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where N; = P : denotes the nontradables price difference between countries H
and F (NPD).

Finally, we define country-wide output and government expenditure as:
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The LHS equalities in Eqs.(A.28) and (A.29) are Eq.(12) in the text.

A.5 Net Exports

Following Gali and Monacelli[3], we define net exports in country H as follows:

P, P
NXtE}/;—P—tCt_ Gt

Gy, A.30
Pt Pps (4-30)

where N X; denotes net exports in country H.

B Nonstochastic Steady State

We focus on equilibria where the state variables follow paths that are close to
a deterministic stationary equilibrium, in which Ilg; = Iy = Ilf; = Hj/k\/,t =1

with Iy, = %, Iy = %, g, = PI::L and II}, , = % where
variables without the subscript indicating the period denote their nonstochastic
steady state value. These imply that the PPI inflation rate is zero in this steady
state. Note that Xz = XN Xp = XN =1 is applied in this steady state with

Pu. < P, Py
XHt = 5. , XN = PNt th = % and XNt = P*’ Because this steady
state is nonstochastlc all productivities are unit Values ie, Ag = Ay =Ap =

Ay, = 1. In addition, we assume that Gy = GF, GN GN and B = B* i
this steady state.



In this steady state, the gross nominal interest rate is equal to the inverse
of the subjective discount factor, as follows:

R=¢"1.

Eq.(A.14) can be rewritten as:
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Eq.(B.2) implies that:
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These equalities and Eq.(B.1) imply that:
Py = CMC™ ; Py =(MC™ ; Pp=(CMC™ ; Piy =¢MC™,  (B.3)

where we use the equalities as follows:

MCy = MCy, = MC™ ; MC = MCRF = MC™,
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which are implied by Eq.(A.17). These equalities imply that:

PH:PN7
Pp = P}

Combining these equalities and the definition of Pp¢, Pp;, P and Pg ,, we
have:

Pp = Pg = Py = Fg,
P — Pp— P} — P5. (B.4)

Following Gali and Monacelli[3], we assume that PPP (purchasing power
parity) holds in the steady state, which means that:

Q=1 (B.5)
Egs.(B.4) and (B.5) imply the following:
P=P" =Py =Py=Py=Py=Pr=Pp=Pp=Ps=P. (B.6)
Note that because Pr = Py and Py = Py, we have:
T=N=1. (B.7)
Because of Egs.(B.3), Eq.(B.4) can be rewritten as:
MC™ = MC™.
Thus, we have:

MC =MC*=(7,

with MC = MC" and MC* = %M.

P
Furthermore, Eqgs.(A.17) and (B.4) imply the following;:
1—
CN¥ = C* (N*)¥ = CT' (B.8)
Eq.(B.8) implies the familiar expression:
(1-7)Uc(C) = (Un(N),
(1-7)Uc(C*) = CUn(N™). (B.9)
Note that because 7 € (0,1) and 6 > 1, this steady state is distorted.
Eq.(A.26) can be rewritten as:
Yu=~C+Gyg ; Yr=~9C+Gp, (BlO)

by using Eq.(B.6). Because Gy = Gr, Yy = Yp. As with Eq.(B.6), Eq.(A.29)
can be rewritten as:

Yw=0-7C+Gy ; Yyr=01-7)C+Gy. (B.11)
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Because Gy = G, Y = Y.
Eq.(B.6) and Eq.(12) in the text imply the following:

Y=Yu+Yy ; Y =Yp+Y},
G=Gy+Gn ; G =Gp+Gy. (B.12)

Combining Eqs.(B.11) and (B.12), we have:
Y=C+G ; Y"'=C+G". (B.13)
Because Gy = G and Gn = G, Eq.(B.12) implies G = G*. Thus,
Y=Y".
Egs.(A.10) and (B.5) imply that:
c=C. (B.14)
Egs.(B.8) and (B.14) imply the following:
N =N~
Eq.(A.21) yields the following:

1-9

B (T) =7Y -G, (B.15)

with B = £ This equality implies B = B*.
We assume B > 0; thus, another transversality condition for local govern-

ment is given by:

Jim B, [6*~'Uc (C)RB] =0, (B.16)
—00

which appears in footnote 11 in the text.

C Log-linearization of the Model

C.1 Aggregate Demand and Output
Log-linearizing Eq.(7) in the text, we obtain the following:

Cf = Q¢, (C].)

where q; denotes the logarithmic CPI differential between the two countries.
Log-linearizing Eq.(A.7) and rearranging yields:

9= (1 =7)ns. (C.2)
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Log-linearizing and manipulating Eq.(A.7), we obtain:
me =377t + (1 =) Tt (C.3)

with mr; = %ﬂ'H’t + %ﬂ'F,t which is derived by log-linearizing the definition of

the price index of tradables, where m; denotes the CPI inflation rate in country

H, 7y, denotes the tradable goods price inflation rate, mg+ and mwg; denote

the inflation rates of tradables produced in countries H and F, respectively, and

mxr+ denotes the inflation rate of nontradables produced in country H.
Log-linearizing the definition of PPI, we have:

prt =pHe + (1= 7) s (C.4)
This equality implies that:
wps =T + (1 =) T, (C.5)

where 7p; denotes the PPI inflation rate in country H.
Log-linearizing Eq.(A.28), we have:

ye = Yyt + 0 — PP+ (L —=Y)ynve + (1 =) pae — (1 =) ppe
Yy + (L =) yne + o + (L —7) oo — Prg-

Substituting Eq.(C.4) into this equality, we have:

v = Yyar+ 1 =) Yne + PPt — PP
= e+ 1 =) yne (C.6)

Log-linearizing the definition of the average price of goods purchased by the
government in country H yields:

PGt = 1Pt + (1 —7) pares (C.7)

which implies that pp+ = pag ¢
Combining the log-linearized LHS of Eq.(A.29) and Eq.(C.7), we have:

gt =Yg, + (1 =) gne- (C.8)

Log-linearizing the first equalities of Eqs.(A.26) and (A.27) and substituting
these equalities into Eq.(C.6), we have:

(1-og)y,  (1-0c)¢

yr = (1—o0g)ci + 5 t+ 5 Ny +o0Gg:. (C.9)

Subtracting the counterpart of Eq.(C.9) in country F from Eq.(C.9), we
have:

yf =y —06)ti + (1= 7@ (1—06)n + oGyl (C.10)
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Log-linearizing Eq.(A.23), we have:

1 1. . 1 1-4
by = Eici41—c— gﬂt +E¢mip + Srt—l — T+ gbt—l + <T> %tt
T o
-yt g (C.11)
oB oB

Combining Egs.(C.3), (C.6), (C.8), (C.10), (C.11) and the counterpart of
Eq.(C.11), we have:

Bw . Bw .,
yfv = 1z o Etyt+1 + ﬂWEtﬂ'tH Bw e + Trt—l - ﬂwav
Bw.w  BPw _w
+ Tbt 17 Tﬂ-t +ocrwyl’ (C.12)
yit = —Brobi + Br (1 —v)vne — Br (1 — ) n—1 + Brbf,
+ ogrrgl. (C.13)
where 7, = dgf denotes the deviation of the nominal interest rate from its

steady-state value; m; denotes the CPI inflation rate in country H; n; denotes
the logarithmic nontradables price disparity between countries H and F' (NPD)

. Pt _ l—og)o op(l—0o _
WlthNt_Px ’ﬂW:m(ng(lic)a;T’ﬂR_(l a(jth (10)6)0 ,’U:l—(l—5>

wEl—F( —1)%;/W:M VR = [(1 UG)5 (15051’5
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- op+(l—og)T ’ (1—og)dT—(1-9d)op
2 1-0c)(1
Bwer gy =1 - Bwen §= 0oogUbe) 3 =14 (1-06), sw = vw +
(f_wgpcc)/\ - X and ¢g = vp — X’ op = ? and og = & being the steady-state

ratio of government bonds to output and the steady-state ratio of government
expenditure to output, respectively; and pg < 1, pyr < 1 and par < 1 being the
coefficient associated with exogenous processes on government expenditure, on
the productivity shifter of tradables and on the productivity of nontradables,
respectively.
Log-linearizing Eq.(A.30) and substituting Eq.(C.9) yields:
. (1=o0g)y

nry = D) N,

with ¢ = (1 — )~y (n — 1) where nz; = dj\}’,Xf denotes the percentage deviation
of the net exports in country H from the steady-state value of output. Note that
this equality becomes nz; = 0 which implies that balanced trade is definitely
applied, under our benchmark parameterization, n = 1.

C.2 Aggregate Supply and Inflation
Log-linearizing Eq.(A.16), we have:

o

k /~
Z (0)” (XH,t4+k + XH,t4+k + XT t+k — XPt+k — MCHt+k) | = 0,
k=0
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with Xg i+ = In Xg ik, Xgt48 = MXH 14k X7tk = D X744 and xpypp =
In XP,t+k:-

Using the fact that Xg ¢+6 = Xmt — Zle TH,i+s, this can be rewritten as:

oo k
k ~
Eq Z (ad) (XH,t - Z TH t+s T XH,t+k + XT t+k — XP+k,t — mcH,t+k>] =0.

k=0 s=1

Furthermore, using the fact that 7o (ab)* ZS L TH4s = o5 Dopen (ad)” TH t+k>
this can be rewritten as:

o0 oo o0

- 1
XHﬂg — 1_—0[5Et ; (Oé(;)k 7TH,t+k + Et ];) (aé)k XH7t+k; + Et kZ:O (Oé(;)k XT,H—IC’

1
1—ad

—Et Z (oz5)k XPt+k — Et Z (a5)k MmCH t+k = 0.

k=0 k=0
Rearranging this, we have:
oo (oo} [ee]
- k §
X = ()" o4k — (1 — ad) g XH,t+k —(1—ad) xT,t_Hc,
k=1 k=0 k=0

(1—ad) Z xP+k ++ (1 —ad) Z (a&)’c MCH t-+ks
k=0 k=0
= admgy1 — (1 —ad)xmge — (1 — ad) xpy + (1 — ad) xpy,
+ (1 —ad) meg + adRp pq1- (C.14)

Log-linearizing the first equality of Eq.(A.13), we have:

(&%
1—

Xt = TH,t- (C.15)
a

Combining Eqs.(C.14) and (C.15) yields:

THt = OTH 41 — KXH,t — KXTt + KXpt + KMCH ¢,

= g1+ (1 =7)wpne — (L =) 6P + Kmep .

Taking the conditional expectation at ¢, the second equality can be rewritten
as:

Tt = OEmpiy1 +8(1—7)pne— k(1 —7)pus + kmem,. (C.16)

with kK = M Similar to Eq.(C.16), the log-linearized second equality

of Eq.(A.14) is glven by:
TN = OBIN 41 — KYDA ¢ + KYDH: + KMCp ¢ (C.17)

Other FONCs for firms can be log-linearized similarly.
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Substituting Egs.(C.17) and (C.16) into Eq.(C.5), we have a PPI-based in-
flation dynamics equation as follows:

TPt = 6Et7rP,t+1 + Kmcy, (018)

where we use me, = ymep ¢ + (1 — ) mepr, which is derived by log-linearizing
the definition of country-wide marginal cost.

Combining Eq.(C.17) and its counterpart for country F, the nontradables
inflation differential is given by:

WJI\%f,t = 6Et7r11\%,7t+1 + Kkyng — Kyt + ﬁmcfm, (C.19)
with
R _
T = — (ne —m—1), (C.20)
being relative nontradables inflation.
By log-linearizing the first equalities in Eq.(A.12) and combining it with
Eq.(C.6), we have:
Y =vams + (1 —7)an, + n, (C.21)
where we also use the log-linearized definition of hours of work, n; = yng+ +

(L =7) e
Combining log-linearized Eq.(A.17), and Egs.(C.9) and (C.21), we have:

A el
MmeHE = 7 oY %nt — (I +ey)an:— (1 —7)pans — T
A o
MeNE T T gt %"t —pyaps —[1+ (1 —7)plan: — T _C;tho
(C.22)

Substituting Eq.(C.22) into the log-linearized definition of the marginal cost
mey = ymem, + (1 — ) mep ¢, we have:

A oG

1 yt_ﬁnt_(1+S0)’7GH,15_(1+50)(1_7)an15_

mcy = gt

(C.23)

1—o0¢

Combining the second equality in Eq.(C.22) and its counterpart for country
F, the logarithmic marginal cost differential associated with nontradables is
given by:

A
megy Tooo¥ —¥m = erame +erare — 1+ (1= 7) elawe,
* Le
A+ =elay, - T——a (C.24)
m—
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C.3 Marginal Cost and Output Gap

Following Gali[3], we define the relationship between output, its natural level
and the output gap as:

Yt =Y + Ut (C.25)

where 7; denotes the logarithmic output gap measured from its natural level, and
9 denotes the logarithmic natural output level. Under the long-run equilibrium,
% = 0 must hold.!

When the fiscal authorities design their policies to reduce the distortion
generated by monopolistically competitive markets, real marginal costs under
the long-run equilibrium are constant, and their logarithm is given by mc; =
0. In addition, under the long-run equilibrium, PPP is applied.2 Thus, the
logarithmic NPD under the long-run equilibrium is given by n; = 0.

Combining these facts, Eq.(C.23) implies that:

— - g
ge = Brams + B (L= 7) ax.s+ < g (C.26)

Combining Egs.(C.12), (C.13), (C.25) and (C.26) can be rewritten as:

QXV = —1 ?W Etﬂﬁ1 — ﬂW"ﬁt + ﬁWEtﬂ'Kfi_l + BTWft—l - ﬁWbXV + BTWbKI’
_Pww 7557’@ e —V)Bﬁ/\/a B 7557@
5 Tt 5 Gt 9 Nt 5 ARt
1-— 3 N«
- #QN”{ +ocswgy (C.27)
Z]tR = —ﬂRébf +Br(1=7)vng —Br (1 —7)ne_1 + ﬁRb£1 - B’YCLH,ta
+ Byapy — B(L =) an + B (1 —7) aj s + SroGyL, (C.28)

where §; = y; — ¥: denotes the logarithmic output gap measured from its natural
level in country H and %; denotes the logarithmic natural output level in country
H, which becomes g; = 0 under the long-run equilibrium. These equalities are
Eqs.(13) and (14) in the text, respectively.

Combining Egs.(C.18), (C.23), (C.25) and (C.26) we have:

KA . YK
2

Tpt = 0By TPy + Ut — —5N¢, (C.29)

1—o0¢g

which is Eq.(15) in the text. Similar to Eq.(C.29), we have the counterpart of
Eq.(C.29) in country F.

IFollowing Gali[3], nominal rigidities disappear in the long-run equilibrium.
2Following Gali[3], we assume a steady state where PPP is applied.
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C.4 NKRD
Combining Eqs.(C.19), (C.23), (C.25) and (C.26), we have:

7r/I\%f,t = 5Et7TJI\%/,t+1 + kG + KNy — Ky (1 - B) ag + Ky (1 - _) aFt,
—k[l+e1 =) (1=8)]ani+r[L+o(1—7) (1-8)]aks
_ RO@G _ f R
o (1-5) o (C.30)

which is Eq.(16) in the text.

D Welfare Criterion

Following Gali and Monacelli[3], Gali[2] and Benigno and Woodford[1], we show
the derivation of the welfare criterion in the text based on the second-order
approximated utility function of Eq.(A.1) in the present appendix. n = 1 is
assumed through the present appendix.

This section consists of four subsections. Subsection D.1 presents the second-
order Taylor expansion of the utility function. Subsection D.2 presents the
second-order approximation of the FONCs for firms. Subsection D.3 eliminates
the linear term and completes the derivation of the welfare criterion. Subsection
D.4 discusses other details regarding the coefficients and the NKPC in terms of
the welfare-relevant output gap.

D.1 Step 1: The Second-order Taylor Expansion of the
Utility Function

The second-order Taylor expansion of the period utility function in Eq.(1) in
the text is given by:

U, - U 1 10U, U 1 1U
- = c! {C (Ct + —cf> +-2%Cc22 NN <nt + —n?) + AN

UcC 2 2 Ug ¢ Uc

+o(ligl)

1 lUCC UNN 1 UNNN
= ¢+ 58?4— 5U—CCCt2 — U_6 (nt + 571%) + U—CF ?

+o(ll’)

where we assume that utility is separable by consumption and hours of work, i.e.,
Ucn = 0. Plugging Up = C_l, Ucc = —0_2, Uy = N? and Uyy = cchp_l
into Eq.(D.1), we have:

U, -U N UnN 1+§0 2 3
o = o g (mer S5 ) o (1)
N N 1+
= PEmta- [nt + S+ @)nf} +o(ligl’) , (D:2)
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with ® = 1 — 1= denoting the steady state wedge between the marginal rate
of substitution between consumption and leisure and the marginal product of
labor where we use the fact that 1 — ® = PTT and Eq.(B.9).

Likewise, we have:

Ur-uU N, L+ N|, 1+p .
T el - [ R a s e ] <o (je). )

Eq.(A.12) can be rewritten as:

Y Dt
Npy = —AH = Ny = —AN =,
)t )t

-0
with Dy ; = fo (P;Tth)) dh and Dy ¢ = fol (PN—t(h)) dh where we use the

PN,t
1
(h)dh Yt (h)dh
fact that ﬂ;{—';—t) =Dy and L+t) =D
Log-linearizing these equahtles, we obtain:
Ny =Yas +das —ame, 3 NN =Ynve Hdae —an

Combining these equalities with Eq.(C.6) and the log-linearized definition of
country level hours of work, n, = yng ¢ + (1 — ) na yields:

ne = y¢ +ydue + (1 =) dn — ar. (D.4)

_ Pu,o(h)Yw,e(R)+Pr e (R)Ynr 1 (h * _ Pre(NYre(H)+PL (DY ()
Let Pp () = Fiiptie e ey and Py, (f) = = O O

These yield pp; (h) = ypm,t+(1 — ) pare (k) and p}, (f) =vpset+(1 =) s (f)
by log-linearizing. Taking these equalities, Eq.(D.4) can be rewritten as:

Py, (W) ¢ Py (W) ?
e — yt—f—fylnEh(%()) +(1—’y)lnEh<M> —a,

H ¢ Py
P h P h
= y —0E, {’yln <—H’t( )) +In(1—7) <—N’t( )>] — ay,
Py Py

= Y — OB, [y (pus (h) —pue) + (L =) (ot () — pave)] — ae,
= y—0IE, (L;t (h)> — ay,

Pt

1 —0
Ppy (R
— yt+ln/ (L()> dh — ay,
0 Pp
= Y —+ dt — Q¢, (D5)

with D, = J}! (PP;(f)) dh. Likewise, we have:

ny =y; +d; —as. (D.6)
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Substituting Eqgs.(D.5) and (D.6) into Egs.(D.2) and (D.3), we have:

L-U _ @ 1 L+ 1+®)
UcC - 1Z G'Gyt +c 1—og |:yt +(14+2)d; + 5 (yt 2ytat) ,
+tip. +o(||§||3),
= T - 1+ ~ R )
UcC l—JGyt ta 1—-o0¢g {yt +1+2)di + ) [(yt) yta't} )

Ftip.+o (||§||3) ,

with a; = yag: + (1 — ) an s and af = vyap + (1 —7) aj, where we use the

fact that % =(1—-0¢) " because N =Y.
Combining Egs.(C.1), (C.2), (C.9) and (C.10), we have:

1 1, . 206 W
Ct_l—ogyt—i_l—ogyt ct+1_o_th'
Combining Eq.(D.7) and this equality yields:
uy -u - 1 1+ (1+@) ,
- = - 1+9®)(de +df) + ————=
UcC 1_O_Gyt (1—0’@)2 ( + )( ¢+ t)+ 2 [yt )
~2yan+ ()" = 2wiaf |} + tim+ o (IE11°) - (D.8)

Let ppy (h) = ppt (h) —ppy. As derived by Gali and Monacelli[3], note that:

1-6
<PP,t (h)> = exp[(1-0)pp: ()],

Pp,
A (1-0)?° )
= 1= (1= 0) e () + e () + 0 (E]°) (D)
In the symmetric equilibrium, we have P’%(th) = 1. This implies:
Ppy (R)\'°
E <1;;T(t)> =1. (D.10)

Combining Egs.(D.9) and (D.10), we have:

R 0—1_ .
Enppy (h) = — Enppy (h)*. (D.11)

-0
In addition, the second-order approximation to (P’%(th)) yields:

2

Pp, () ~° . o
(;TH) =1 0pp () + pre () + o0 (€])
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This equality implies:

. 02
Dy = 1= 0Eypp (h) + 5 Enbre () + o ([€]°) -

Substituting Eq.(D.11) into this equality, we have:

0. .
Di = 1+ Eupre (h)” +o([¢°)

4 Dvars (5 (1) + o ()

This equality implies:

o = gvarn (o (1) + o €] (D.12)

which clearly corresponds to the equality derived by Gali and Monacelli[3].
Lemma 1

o0 1 (o)
t 2 t, 2
> dtvan (e (1) = 30w,

Proof: See Woodford[6], p 399-400.

Substituting Lemma 1, Egs.(D.12) and (D.8) into the definition of welfare
in the text, we have:

= P 1+®)6 1+®)6
WW — Eozét l:l ~W ( + ) 2 ( + ) ( *’t)2
t=0

. “oet T U—0g)d Pt 1—o0g)da V'

I+ (1+9P) 2 (A+9)A+P) 2

—W (Yt —a)” — W (yr —ai)
Y tip.+o (||g||3) . (D.13)

Note that Eg > 7o, 6* U;JWC_CU = WW because UsC =1 and U = U*.

D.2 Step 2: The Second-order Approximation of the FONCs
for Firms

Substituting the first and the second equalities in Eq.(B.1) into the first and
the second equalities in Eq.(A.13), we have:

6—1
1 _ Fy
— (1= a11? 1) — | At
l1—« ( @ Hit KH,t

0—-1
1 _ Fy
—— (1-amf)) = (2 D.14
o (1-eny; (KW) (D-14)
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Taking logarithms on both sides in Eq.(D.14), we have:

1 (e 69—
—log (m -1 aHH;) = (0—1)(logKg; —log Fr)

1 [0 60—
—log (m -1 aHN;) = (0—1)(logKn —log Fxry) (D.15)

The first-order approximation of the LHS in Eq.(D.15) is given by:

1 a 41\  (@-1a 2
1°g<1_a 1—aHH’t> = oo ()

1 a 91\  (@-1a 2
—log <1 o — 1 — aHN,t> = ﬁﬂ/\/ﬂf + o0 <H§H ) (D].G)

A weighted average of the two equalities in Eq.(D.16) is given by:

@—-1)a 0-1)«

S 0-1)a
1— YTH,¢ 11— —

(L=7)mnre = 1_

TPty
where we use Eq.(C.5). The second-order approximation of the RHS of this
equality yields:

0-1a O-1)« @-1)a3 , (Hf”g)

= O
T—a " Tq ™t gy

Combining this equality and Eq.(D.15), we have:

O, G200 —0- 0= £+ (1617), @)

with k¢ = vk + (1 — ) kare and fr = vfu + (1 — ) far,e where we use the
fact that K = F. Note that Ky +, Knxt, Fra+ and F; are (||§||2)

Log-linearizing the first and the second equality in the LHS in Eq.(B.2) and
combining them, we have:

fo

kt = ]’%t - 1 TPt (D18>

with k;, = (1 - ad)E; Z;O:O (046)’C 7~€t,t+k and l~ct,t+k =1+ ) Yrrr— (1+f)ac i+

%91&4« +0 25:1 Tptts-
Log-linearizing the first and the second equality on the RHS in Eq.(B.2) and
combining them, we have:

(1o

ft:ft—l_a

TPty (D19>

with f, = (1—ad)E: > 02, (aé)k f;,Hk and ft,t+k =— 1ff;'G Ytt+k— (1+f)ac atvkt
%gt-‘rk + (0 - 1) Zl;:l TP t+s-
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Subtracting Eq.(D.19) from Eq.(D.18) yields:
ke — fo = ke — fi. (D.20)
Substituting Eq.(D.20) into Eq.(D.17) yields:

(eliliaﬂp,t + ((91__2)04377%,t =©0-1) (k= 17)+o(l&).  D21)

An arbitrary variable V; can be approximated as:
‘/t _ eln Vi

1
= MV IV~ V) + 2" IV, — V) o (||§||3)
1 3
174 (1 + v + 51}?) +o0 (Hg” ) )

Thus, we have the second-order approximation of k, and ft as follows:

- . 1-
ke = ki+ §kt2
0o _ 1-
= (]_ — a6) Et Z (Oé(s)k <kt,t+k + §kt2,t+k> (D22)
k=0
- 1
fo = fit gk
0o _ 1-
- =B @) (et 3R] D)
k=0
Subtracting Eq.(D.23) from Eq.(D.22) yields:
- . > - . 1 /- -
ki—fi = (1—ad)E; Z (05)k [(kt,t+k - ft,t+k) + 3 (ktZ,t+k - ft2,t+k):|
k=0
(1-ad)a 3
Ty TR o (||§|| ) (D.24)
with
Zy = Ey Z (a5)k (lzit,t—s-k + ft,t+k> . (D.25)
k=0

The first term on the RHS in Eq.(D.24) can be rewritten as:

A
1—o0¢

0o _ _ 0o 1
E g - =E k j D.2
¢ kZ:O (ad) (kt,t+k ft,t+k) ¢ ];) (ad) Gtk + 7——=Pr;t (D.26)

with PP,t =L Ezo:() (aa)k TPt+k-
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The second term on the RHS in Eq.(D.24) can be rewritten as:

—Et Z (ad) ( titk JEtQ,tJrk) = %Et > (ad)* (&iwk - ﬁf,t-&-k)
k=0

0o k
+E, Z (ad)" Z TPt+k [aﬁft,wk -(0-1) ﬁt,tﬂg]
k=0 s=1

o0

= Etz (a) <zk: pm) [ _(9_1)2} (D.27)

with
—~ - oc (1+ oa(1+
kkiive = (14 @) Jeyr — yat+k + @gwka
-~ oa . oa(1+¢) oc (1+¢)
= — - _ . (D.28
Flivr T og Ui N Gt+k + =5 Gr+k. (D.28)

The last term on the RHS in Eq.(D.27) can be rewritten as:

2
20 -1 —
_Et Z 04(5 (Z Tp, t+s> |:02 - (9 - 1)2i| == mEt Z (015)k 7TP,t+k; (ﬂ-P,t-‘rk + 2PP¢+]4;) .
k=0
(D.29)

Furthermore, the second term on the RHS in Eq.(D.29) can be rewritten as:

[e%s) k [e%s)
E, Z (045)k Z TP,t+s [ekkt,wk -(0-1) fft,t+k] =E; Z (045)k TP t+kJirk,
k=0 s=1 k=0
(D.30)
with
=By > (ad)" [0Rkeerk — (0= 1) FFrvss] - (D.31)
Substituting Eqgs.(D.29) and (D.30) into Eq.(D.28) yields:
 — 1. & ~2 —2
§Et Z (aﬁ) ( tt+k f152,t+k> = §Et Z (a(s)k (kkt,t+k - fft,t+k)
k=0 k=0
+ Et Z (Ol(;)k 7TP,t+th+k (D32)
k=0
20 — 1 =
+ mEt kZ:O (aé)k TPtk (7Tp7t+k + QPP,t_A,_k) .
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Substituting Eqgs.(D.25) and (D.31) into Eq.(D.24), we have:

ke—fr = E Z (@d)" {(1 — ad) {(l;\k/t,t-&-k - ﬁt,t+k) + % (];\];f,t-&—k - ffft-&-k)} }
k=0

+ED () mpik + (1—ad)Ey Y (ad)* mpyidisn
k=1 k=0
20 —1_ & (1—ad)a

_|_

E; Z (ad)F (7mpg+k + 2Pp k) —
k=0

3
mﬁp’tZt +o (Hg” ) .

(D.33)

Substituting Eq.(D.21) into Eq.(D.33) to eliminate the term k;, — f; in the
LHS in Eq.(D.32) yields:

1—ad
2

~ ~ 1—a)(1—ad) /~2 —~2
TptZy = K (kkt,zH-k - fft,t+k) + % (kkt,t+k - fft,t+k>

+ (1 - Ol) 5Et7TP,t+1 + (]. — a) (1 — 045) Eympit1Ji41
L-@Es-1)

2
TPt + Z”P,t +

0Eimpit1 (Mpit1 + 2Ppit1)

3 1—ad
+ adE; (Wp,t+1 + ZWIQ:,tH + Tﬂp,t+1zt+1>

+o(lel’). (D.34)

Eq.(D.31) can be rewritten as:
1 & — _ N N
Ji = 5Et Z (ad)” {kkt,t—s-k — flopen +(20-1) (kkt7t+k - fft,t+k)] -(D.35)
k=0

Substituting Eqgs.(D.18), (D.19) and (D.28) into Eq.(D.25), we have:

.- ~ ~ 20— 1
E, Z (O‘é)k (kkt,tJrk - fft,tJrk) =7y — 1= Ol(S,PP’t. (D.36)
k=0

Substituting Eq.(D.28) into Eq.(D.26) yields:

Ey Z (045)k (ﬁt,wk - ﬁt,t+k) = E Z (Ms)k (];t,t-&-k - ﬁ:,t-s—k)
k=0 k=0

1
1—ad

Pr,t, (D.37)

where we use the fact that

’;\];t,t - }?t,t —1_ oG Yi- (D.38)
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Substituting Eqgs.(D.36) and (D.37) into Eq.(D.35) yields:

[e'e] ~ - 9 _
Jp = %Et > (ad)” |:Zt +(20 - 1) (k‘t,t+k - ft,tJrk) - 21(_7%51)73%] - (D.39)

k=0

In the first order, Eq.(D.21) can be rewritten as:

TPt = kE; i (a‘s)k (l%t,t-‘rk - ft,t-‘rk) +o0 (”5”2) .

k=0

Substituting this equality into Eq.(D.39), we have:

1. a(0-1) 20— 1
J,==7 _
1= 3 + + o TPt 1_a6PP,t
Substituting this equality into Eq.(D.34) yields:
3 1—ad ~ o 1 /~2 ~2
Tpt + Zﬁ%ﬂ: + 5 Tptly = K [k'k't,t —ffeet 3 (kkt,t - fft,t)]
1—ad)d
+0Emp 41 + %Etﬂ?,t-&-lzt-&-l

36 C)
+ ZEtﬂ-%{t-ﬁ-l + TEtﬂ-%{t-ﬁ-l

+o(Jlel).

with © = a (46 — 1) — 3. Adding %W%,t to both sides in this equality, we have:

— — 1 /—~2 —2 (C]
My =5 Wk = Fop+ 5 (W = Fop) | + 0BcMugs + —mh,,  (DAO)

with My = mpy + 375, + 15227p, Z, + 97%,. Substituting Eq.(D.38) into
Eq.(D.40), we have:

A
mpo = 0mpes + 3 + o (I€]°)
—oc
in the first order. Thus, Eq.(D.40) corresponds to the second-order approxi-

mated NKPC in Benigno and Woodford[1]. Iterating Eq.(D.40) forward, we
have:

> — — 1 /~2 —~2
M = KJEO Z (5t |:kkt,t - fft,t + 5 (kkt,t - fft,t):| + E() Z(s TrPt? D 41)
t=0

with M = M where we take an expectation in period zero.
Eq.(D.28) implies:

2 2 -~ 5 20c(1+) 206 (14 ) .
ky,— = 2 _ t.i.p.
T W1yt 1—oa) A Yrat d—og) A Ytge + t.1.D
O U og. 12
= W1 |Yp — Waw20ar — Twwt} »
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Usoelite) g g,

with &) = g=S—7, G = 1+ 22, 0y = 1 - = U-oa)lite),

Substituting this equality and Eq.(D.38) into Eq.(D.41), we have:

> A L@ o oG . 2 0
M = kEg Z:O(st { = oo Ut + 71 |:yt — WaWwear — TGW3gt:| + Zﬂ—l%,t}
Ftip.+o (Hgn?’) . (D.42)

The counterpart of Eq.(D.42) in country F is derived similarly as:

+tip.+o (||§||3) .
Combining this equality and Eq.(D.42) yields:
MW = KE, i&t { A a7 + ©1 [(yt — Wywaay — U—G@39t)2 + (y;
— 1—o0¢ 4 A

—4Gna] — U—Gaggt*ﬂ + % [m%,t + (w}*,,t)Q}}
Ftip. +o (||g\|3) . (D.43)

D.3 Step 3: Elimination of the Linear Term and Complet-
ing the Derivation
Multiplying ® by both sides in Eq.(D.43), and subtracting this from Eq.(D.13),

we have:

oo

1
wW_omMW = E 5t{7
Ot; (I—0g)4

2% (1 — o) 1+ 9 ..
—(1+S0)[ h w2 + (1_0(;)2} (yrar + yz ag)

2kPoq . . 11 (1+2)6 @0 .\ 2
- E o3 (yege + yi g7) + 1 [((7) + _} {W?D,t +(7h,) }

1 —Jg)li 2
P (1 - K/)\) ~W . 3
—i—ﬁyt } +tip.+o (HfH ) .

[(1+ ) (1+®) + 5@an] [47 + (7)?]

Rearranging this equality, we have:

o0

1
wv = —E at{—
O; (1—0g)4

2/‘{,(1)(1—0'(; - 1+(b * %
—(1+<p){ 3 >w2+(1_0G)2} (yrar + yiay)

[(1+ ) (1+ @) + 5@an] [v? + ()]
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2/&@0@ 1f(1+2)8 PO . N2
h\ s (Yege + i gr) + 1 [m T } [Wp,t + (754) }}

LD (1—kA) )
+E026t1(_—0G)th +dMY 4 tip.+o (\|§|\3). (D.44)
t=0

Note that MW = Eo Y272, 6" 22—y} + o (||£||2> because of Eq.(D.43). Thus,
the second and the third terms in Eq.(D.44) can be rewritten as:

2P (1—kA) a1 — kA )
OZ oo U oM tz oo 0 oMY+ M
1
— + P ~W w
= EOZ<$ @<J—1>M +
_ 2w
N H/\M
= To.
where I'g = ‘I;\WPO denotes a transitory component, which is predetermined.
We use this fact to derive the above equality as follows:
Ay = B Y S o (je)?),
7 i L—oc
= MY

which can be derived by iterating the second order approximated period FONCs
for firms, namely, 7p; = 6E;mp 11 + 7==7¢ + 0 (||§H )
Substituting Eq.(D.45) into Eq.(D.44) and rearranging, we have:

o]
1
" ‘ 2 *\2 . .
w O; {(1—JG)4W1 Yi +(yt) (055 (ytat+ytat)

* sk 1 * 2 .
—ws (yege + i 97) + w1 [7hy + (75,)”] } +To + tip+o (I€)°)

withw; = (14+¢) (1 + @) + kD1, we = (1 + @) [QHCI)(I;UG)‘:’Z + (12;‘2)2], w3 =

WTG% and wy = % + %.As shown in this equality, the linear term

disappears. By arranging this equality, we have:

A Ak Aﬂ' ATr * 2 .

wwvo = ——Eozét[ 92 + %(yt)2+7ﬂ';t+7(ﬂp¢):|+F0—|-t.l.p.
+o(llel*),

WlthAy—%,gz(l‘F )2(1_06*)2—0%:, AWE%-F%,XE

1+¢)1+@)(1-06), s = (1+¢)°(1-0g)’ —0% and © = a (40— 1) —
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3; and where 1 and €, are certain coefficients that consist of the structural
parameters, §: = y:—y; denotes the welfare-relevant output gap, yf = Q1vam,:+
Q1 (1 —v) an 1 +Q29: denotes the logarithmic efficient level of output in country
H. This equality corresponds to the second-order approximated welfare function
in the text.

Note that Eq.(15) in the text can be rewritten as follows:

Tpt = 0E4Tpiqt1 + Ut + €,

1—o0¢

where ¢, = k(1 + @) Q3vam, + k(1 +¢) Q3 (1 — ) an,t — kogQage is a com-
posite cost-push term with 25 and €24 denoting certain coefficients that consist
of the structural parameters. This NKPC corresponds to the one derived by
Benigno and Woodford (2005). A composite cost-push term indicates the de-
gree to which the exogenous disturbances preclude simultaneous dissolution of
the tradeoff between inflation and the welfare-relevant output gap. Thus, the
inflation—output gap tradeoffs can no longer be dissolved completely, even if all
goods are tradable.

D.4 Other Details on Coefficients and the NKPC in Terms
of the Welfare-relevant Output Gap

Note that complicated coefficients associated with the target level of output are
as follows:

(1-06) (1+¢) [46@ (1 - 06)* (s + 06) + As (1 + @)
(x + KD +¢) X

(1—0¢)’ 4kPoc s — (1 —o0g) (1 + ¢)]
(x + £Ps) As

h

Q2

The NKPCs in terms of the welfare-relevant output gap are different to the
NKPCs in terms of the output gap. Eq.(38) can be rewritten as:

KA .
1—O'G

Yt
KA N e -
= O0Eimpii1 + 1—on (yt + Yy — yt)
—oq
KA 3 KA
~ Q _
l—O'Gyt+1—0'G( 1 B)at—’_l—O'G

mps = OEimpiy1 +

= O0Eimpit1 +

(0%

= (Emmpit1 + e+ £ (14 @) Q3as + kogQag:

1—0¢g

= (SEtﬂ'P,t+1 + Ut + €, (D46)

1—O'G

with Q3 — 4&@(1—0?)2(§$0G))+A§(1+®) and Q4 — (1—0@)4/({@[(—(151—)0'(;)(1—9—«;7]) — 1
- x+rP+<)c - X+rP+<)s —og’
This equality corresponds to Eq.(21) in the text.
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E Lagrangian and its FONCs

E.1 Optimal Monetary Policy Alone
The Lagrangian is given by:

= . Bw - . Bw
£ = Ep {; st {LXV + p1e (th . 0G9t+1 + Bw iy — /BWWK/H - Trt—l
—I—ﬁTW?TXV + ﬁwav> + pioe 57— Br (L =) vng + Br (1 — ) ne—1]

KA N N EA
thze | TR — 0P+l — T g Ut ) T\ The = OTpys1 — T og

+ ng — d Ngt1 + NP GR - 1 n
Bot M T T s v T Tro+rt  Tto4nrt! '

because b, = b; = 0 for all ¢.
The FONCs are as follows:

Ar B
L + 2—‘21 (pie— pag—1) + (u3e —pse—1) = 0
Aﬂ' * ﬁ
5 TP + 2—‘21 (pie — pig—1) + (pae — pag—1) = 0
Ay n 1 L MK n KQ
D) Yt 2M1¢ M2t (1—Ug)M3’t 1+6+/€M5’t
_ﬂ—Wﬂ = 0
(1 — Ug) 20 11
Ay, " 1 AK K@
D) Yt 2#1,t H2,¢ (1—JG)H4’t 1+5+K#5,t
_57"‘/” = 0
(I—og)26" 1
1
—Br(1- st — ———p5s = O
Br (1 —7)vpae — Hst T o3 nhet1
pe = 0 (EI)

Note that the fifth equality in Eq.(E.1) corresponds to the second equality in
Eq.(21) in the text. Because of commitment, a lagged Lagrangian multiplier
appears.

Combining the first to the fourth and the sixth equalities in Eq.(E.1), we
have:

AemV + (pa — p3,0-1) + (pay — pag—1) = 0,
]. + 90 ~W K'/)\ HA
1_oc? ~ (T—00)2"" T —og) 2

Combining both equalities in Eq.(E.2) yields:

A (1—0’(;) N N
WXV:—yAT(tW—ZJKQ,
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which is Eq.(19) in the text.
Combining the first to the fourth and the sixth equalities in Eq.(E.1), we
have:

A
%Wg,t + (w3t — p3e—1) — (Ha,e — pa—1) = 0,
Ay R KA 2Kp
—7 - =0 E3
5 Yt T M2 1—0G'u3’t+1—0Gu4’t+1+6+mu5’t (E.3)

Combining both equalities in Eq.(E.3) yields:

A, (1— (oxel “ ~ 2(1— Ug)
Wg,t = - yg\ S ) (th - Z/5—1) - (Aﬁ (2t — p2,e—1)
(1 —0g)4kyp

NS TETET) (M5, — p5,0-1) 5 (E4)

which is the first equality in Eq.(21) in the text.

E.2 Optimal Monetary and Fiscal Policy
The Lagrangian is given by:

o0
. Bw . . Bw .
fom {Zét 28 (51 2 Bl = B
t=0
+57W7rtw + Bwb]” — %Wb%) + pioe [57 + BrObE — Br (1 — ) vy

KX N
+0r (1 —y)ne_1] + pse (Wp,t —0Tpiy1 — 1~ oo yt> + Hat (Wp,t

it

N BA ., )
—0Tp 41— e Yp | + M5, | N Ney1 +

The FONCs of the Lagrangian are given by Eq.(E.1) and the following equal-
ities:

K@
1+5+k

Bw

7#1,t+6R6H2,t = 0,
ﬁ?wm,t—ﬁR(SMQ,t = 0. (E5)

Combining both equalities in Eq.(E.5), we have:
pa,e = 0. (E.6)
Substituting Eq.(E.6) into Eq.(E.4), we have:

R _Ay(l_UG) (AR ~R ) (1 —o0c)4rp

= — — — _1). (E.7
Tpt A RN t Yi—1 ArkN(L+0 + 1) (M5,t U5t 1). (E.7)
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Substituting Eq.(E.6) and the initial condition us —1 = 0 into the fifth equal-
ity in Eq.(E.1), we have:

ps,e = 0. (E.8)

Substituting Eq.(E.8) into Eq.(E.7) yields:

A (1 —O’G) . .
Wg,t = %7 (th - yﬁl) )

which is Eq.(22) in the text.

F Derivation of Social Loss

Using the stable roots obtained by analyzing the determinacy, this section cal-
culates social loss analytically.? We assume that the model includes the price
shocks that forbid the central bank from being able to stabilize inflation and
the output gap simultaneously.

Similar to Eq.(D.46), we have the NKPC in terms of the welfare-relevant
output gap in country F' as follows:

7T}k:u,t = 5Et7TP,t+l + :l;;; + E:, (Fl)

1-— (Xel
with € = k (1 + ¢) Qzaf + kogQagy. Combining this equality and Eq.(D.46),
we have:
KA
WW:&Emg/Kl—i—l_ 9+ el

Note that e = Q5v€m, + QsvEre + Qs (1 —7) e + Qs (1= 7) Exry — DG,
with Q5 = w and Qg = kog§y.

Firstly, we calculate the system of the average block. Substituting Eq.(19)
in the text into this equality, we have:

Eg/, = Qro g — 619V, + Q6 e, (F.2)
with Q7 = };Zi (1 + 46+ ?fgg) and Qg = % Its vector form is given
by:

CAREANERE
with M = { 971571 _%71 }

3See Monacelli[4] and Walsh[5].
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These roots are the solution to the characteristic equations as follows:
T2 — tr (M) + det (M) = 0,

with tr (M) = 975_1 = W, + Uy and det (M) =61= U0, > 1.
Let us suppose | ¥y |< 1. ¥, satisfies:

Uy <1< t<Wy=06"10t,

The pair of solutions to the characteristic equation is as follows:

o 45
N 14 /1 - ==
L2759 ( Q%)

with ¥, » denoting the pair of solutions to the characteristic equation.
Eq.(F.2) can be rewritten as:

Q 1 o Q
<1 - %L + ng) 9 = 58 ey, (F.3)

where L is the lag operator. The coefficient on the LHS in Eq.(F.3) can be
rewritten as:

1—%L+%L2:(1—\111L)(1—\I/2L).
Substituting this into Eq.(F.3), we have:
(1 W1L) (1~ Tl Y = el (F.4)
Because (1 — W,L) ' = — Yoo (UoL)™ ¥ this can be rewritten as:
(1-0L) " = -Qs¥1e)”,

where we use the fact that ¥y = §~1¥'. Thus, the final form of the solution
is given by:

= -0,y Z okl (F.5)

Secondly, we calculate the system of the relative block. Subtracting its
counterpart in country F from Eq.(D.46), we have:

KA
T = 5Et77t+1 + 1= yt +er,
with et = 2Q57€m — 2Q7Er + 295 (1 —7) Envye — 295 (1 — ) Ent — Qg,fgt.

Substituting Eq.(22) in the text into this equality and using a similar procedure
to derive Eq.(F.5), we have:

gt = Qg Y Whet (F.6)
k=0
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Note that v; = v}V + fvf. Thus, combining Eqs.(F.5) and (F.6), we have:

e =—Qs01 Y Whey . (F.7)
k=0

Subtracting Eq.(F.7) with a one period lag from Eq.(F.7), we have:
(G = Ge—1) = Q¥ (1 - Z Uil g — Qsey (F.8)

The FONCs under the optimal monetary and policy regime imply:
o =—Q3" (Gt — Ge—1) - (F.9)
Combining Eqs.(F.7) and (F.8), we have:

Tpy=— | Uy (1-0) Z Thle, o —ey. (F.10)
Note that v; = v/" — vff. Thus, combining Eqs.(F.5) and (F.6), we have:

g = -0 Yy Wher . (F.11)
k=0

Subtracting Eq.(F.7) with a one period lag from Eq.(F.7) yields:

(oo}

(07 = 95_1) = QW1 (1 - W1) Y Ui e, — el (F.12)
k=0

The FONCs under the optimal monetary and policy regime imply:
mpe =~ (5 —5i0) - (F.13)
Combining Eqs.(F.7) and (F.8), we have:

Tpy=— | ¥1(1—¥1) prk A (F.14)
k=0
Eq.(F.7) implies:
Z‘I’%Et b (F.15)

Eq.(F.10) implies:

(npy — &) = 2\112(k De2 (F.16)
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The LHS in Eq.(F.16) can be rewritten as:
(nps —er)” = Thy — 2Tpucs + & (F.17)
Multiplying by &; on both sides of Eq.(F.10), we have:
TptEr = \Illet, (F.18)

because the serial correlation of shocks is zero. Combining Eqs.(F.17) and (F.18)
yields:

(7Tp,t — Et)z = 7T12:‘,t + (1 — 2\I/1> 8?. (F19>

Combining Egs.(F.16) and (F.19), we have:
ml, =0 (1-V Z\IJQ"“ Ve2 | —(1-20;)e2. (F.20)

By using a similar procedure to derive Egs.(F.15) and (F.20), we have:

@) = (201)° Y W (ef )7, (F.21)
k=0

* V2 _ 21 2 = 2(k—1) [ _x 2 )

(7}4) TP (1—0p)* ) Wy (5 k)" — (1 —2Ty) (7). (F.22)

k=0

Under the self-oriented setting, the Lagrangian for country H is given by:

£ = Eg {Z 5t |:Lt + pat (ﬂfv - ﬁW @H.l + Bw iy — ﬂWWK/H - /BTWftq
t=0

+ﬁTW7TXV+ﬁbeV - BTW??K1> + p2,e [G + BrObE — Br (1 — ) vny

KA .
+B8r (1 =) ng—1] + pay (7TP,t — 0Pyl — m%) + Hagt (Wp,t

&k _K/—)\wk + n, — d n 4 Ky ~R
TP t+1 1_0Gyt Hs,¢ |\ Nt 1404 pittt H_(H_Kyt
1 w, A—0a)Ay w (A—0c)Ay w
_1+6+mnt‘1>] +Ho {Wﬁ RS v W v W
(1-—0g)A, . (1—-0g)A, . 2(1-o0¢)
e
2(1-o0¢) n 4(1—o0g)ky Al —o0g)kp
Aeidh PR N A+ 6+ 1) T AprA (L 10+ i) 0!

1
—(1- 5| V.
+us,t [Ms,t (1 —7) Brvpz,: 1+6+Hu5,t 1]}
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Because the central bank conducts optimal monetary policy, the FONCs un-
der the optimal monetary policy alone, Eq.(21) in the text, appear in this
Lagrangian as constraints. A similar Lagrangian is given for the government
in country F' although L} replaces L;. Note that any exogenous shifters are

omitted in this Lagrangian.

The government in country H chooses the sequence {mp, G, nq, bt}fio while

. ~ (oo}
the government in country F' chooses the sequence {W}‘)’t,yt*, nt’bZ}t=o

commitment. The FONCs are given by:

Bw 1

Bw
A, - — = _
TPt + og Mt + U3t 95 Mt—1 ~ Hai-1 + 516t + prt
1 KA K@ Bw
Ay + = - - A SR YRR
yYt + gHLt + 2y 1= O_GM3,t + 1104 ntot 1-00) g H1t-1
(l—Ug)Ay (].—UG)Ay
KAN 2 Ho,t KA Hr.t
1
_ 1_ e
Br (1 —7)vpz + ps,e T kot
ﬁTWlil,t + BrO ¢
. B 1
Armp, + g—vgﬂl,t + Ha,t — 2—2/,“1,:&—1 — -1+ E,UG,t — U7t
. 1 KA K Bw
NG + = - -——Tr S ST
g + SHLt + p2,t 1—oc Hae =7 o Hs.t 1=00) g H1t-1
(1—0’@)Ay _ (1—0G)Ay
KAN 2 Ho,t KA Hr.e
B
Twﬂl,t — BrOpa;

The fourth and the seventh equalities in Eq.(F.23) imply:

1 =073 pos=0.
The third equality in Eq.(F.23) and Eq.(F.24) imply:

M5t = 07

under

(F.24)

(F.25)

given the initial condition ps5 _1 = 0. Substituting Egs.(F.24) and (F.25) into
the first, the second, the fifth and the sixth equalities in Eq.(F.23) yields:

1
Armpe + (3,0 — p3,6-1) + §Mﬁ,t +pre = 0 (F.26)
R KA (1—0@)/\ (1—0(;)/\
Ay — Y — Y = F.2
wbt = Tt T Ty Hed PV 0 (F.27)
1
Armpy + (paye — pae—1) + SHet — KT = 0 (F.28)
. KA (I1-0g)A (I1-0g)A
ANyg; — Y - = 0 (F.29
el ey y R PV (F.29)
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Egs.(F.26) and (F.28) imply the following;:

1 1 1
SHet = —Am)V — 3 (M3t — p3,t-1) — B (Mat — pai—1) (F.30)
A 1 1
Py = —77r11§,t =5 (et = H3e-1) + 5 (ae — pag-1)  (F.31)

Combining Eq.(F.30) and Eq.(19) in the text, we have:

1 (1—0c)hy 1 1
PLaC kA w— (g —ay) - B} (p3,t — H3—1) — Shat- (F.32)

Combining Eqs.(F.27) and (F.29), we have:

2
—% (M3t — p3,6-1) — % (Mayt — pai—1) = —% (QZ/V — yzl) — (1(;/\0)762;)/\:\31 (6,6 — Mo,t—1) -
Substituting this equality into Eq.(F.32) yields:
1 (1-o0g)’A, (1-0¢6)* A,
[5 SV S VE W
This equality implies the following;:
pe,t =0, (F.33)

given the initial condition p,—1 = 0.
Substituting Eqgs.(F.24) and (F.25) into Eq.(21) in the text, we have:

R (1_‘7G)Ay ~R (1_UG)Ay ~R

TPt = KA, Y KA, Ye-1-

Combining this equality and Eq.(F.31) yields:

(1—0g)A, . . 1 1
M7t = Ty (yf - Z/?_1) 3 (13, — pai—1) + 3 (ta — prai—1) . (F.34)
Combining Egs.(F.27) and (F.29), we have:
1 1 1-0e)Ay ;. . (1—0g)*A
_5 (NS,t - ,U3,t71) + 5 (,U4,t - ,U4,t71) = —W (th - yf_l) - Tﬂy (,U7,t - M7,t71) .
Combining this equality and Eq.(F.34), we have:
 (1-0)’A,
M7t = RN, (,U7,t M?,t—l) »
which implies the following
K7t = 0) (F35)
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given the initial condition pu7 1 = 0.
Substituting Eqgs.(F.33) and (F.35) into Eqgs.(F.26)—(F.29) yields:

e s )
Tpt = A, M3t — H3,t—1
1-0c)A, . R
(Ms,t - Ms,t—l) = % (9t — Jt—1)
; L ( )
T = _— — _
Pt A, Ha,t — Ha,t—1
1—0g)A, ,. e
(,U4,t - M4,t71) = % (yt - yt71) . (F-36)

Combining the first and the second equalities in Eq.(F.36) yields:

1-— A, ~
Tpy = —% (U — Ge—1) - (F.37)

Combining the third and the fourth equalities in Eq.(F.36) yields:

(1 — Uc;> Ay

Tpy = ———— (9 = 9{1) - (F.38)
KAA

Combining Eqgs.(F.37) and (F.38) yields:

(I—-0c)Ay . R
WXV = —KU)\—Aﬂy(tW—Z/tVL),
(1—0’@/\ N R
wf?’ = _T:y(yﬁ_yﬁl)v

which correspond to Egs.(22) and (25) in the text, respectively. Thus, the
optimality conditions for self-oriented fiscal authorities are the same as the one
under the optimal monetary and fiscal policy regime. This implies that the
social loss is the same between the optimal monetary and fiscal policy regime
under the cooperative setting and the self-oriented fiscal authorities with optimal
monetary policy.

The definitions of the composite cost push terms imply the following:

& QolFr; + QoéRr s + 16,
N . 22 . \2
() = Qotd, + Qo (&) +Qu (€,)°,

with Qg = [ (1 + ¢) Q37]%, Q10 = [ (1 + ¢) Q3 (1 —7)]* and Q1 = (ko).
Substituting these equalities into Eqgs.(F.15), (F.20) to (F.22) yields:

g o= (Qs01)? D U (Qh, k + Qo€ g + 1€l )
k=0
7T12>,t = Ui(1- ‘1’1)2 Z ‘I’%(k_l) (9951%1,t—k + Qlogjz\f,t—k + Qllfé,t—k)
k=0
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— (1 —2W1) (&G4 + Qu0&rr 4 + Q1168 4)

G = (10 YU [06h o (G )’ + O (650 0)’]
k=0
() = W0 W ) [+ Do (€ )’ + O (o))
k=0
—(1-2%) {99512% + Q10 (5}'{/,02 + Q11 (55,02} (F.39)
Substituting Eq.(F.39) into Eq.(18) in the text, we have:
LY = 5 (1‘111\11%) {Aygj‘pl +Ar (1— ‘1’1)] {Qg [var (£,4) + var (Ep¢)]

+Q40 [var (&nt) + var (57\/75)] + Q11 [var (ég,t) + var ({é;t)} } ,

where we take the expectation in period zero on both sides. Substituting this
equality into:

a = (=N {ev(@=B)ami+[1+01—7) (1-5)] ans— ey (1—B) ars
_ _ N * o QDO—G R
(1 (=) (= )] aiea = 2501 ).
which is derived from Eq.(16) in the text with o = 0 and §; = g; = 0 yields:
' A, Qg
w 1 yils ¥ _
L =0 2(1—19) [ 5 T A (1 \Ifl)} {Qq [var (§mr,¢) + var (€r,)]

+0 [var (Enr4) + var (E,) | + Q1 [var (Ege) +var (€5,)] ). (F.40)
Substituting Eq.(F.39) into Eq.(18) in the text, we have:

t 2(1—02) 2

+Quvar (§.0)]

where we take the expectation in period zero on both sides. Substituting this

equality into the definition of the respective loss in country H in the text yields:

[,NC N \Ill AyQSqll

t (1-0)2(1—02) 2

+Quvar (§g.t)] -
Substituting this equality and its counterpart in country F' into the definition

of the union-wide social loss brought about by self-oriented fiscal authorities in
both countries, we have:

LNew = ;11(11 — {AQQ;\I“ +A(1- \111)] {Qq [var (€ ¢) + var (Ep¢)]

+Q10 [Var (Ent) + var (@*\/t)] + Q1 [Var (€g,t) + var (fét)] } ,

which implies that £ = LV¥YW. Furthermore, this equality and Eq.(F.40)
correspond to the equality on page 25 of the text.

+ Aﬂ— (1 — ‘111):| [ngar (£H,t) + ngvar (£N’t)

+ AT{' (1 — \I/1>:| [QgV&I‘ (§H,t> + Qlovar (gN,t)
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