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A FONCs for Households and Firms

A sequence of budget constraints is given by:
1
Rt—l [DZL—I + Bf_lF (—Spt_l) (1 — 60} + WtNt + PRt Z / Pt (Z) Ct (Z) di + DZL + Btn,
0
(A1)

As shown in Eq.(4) in the text, the optimal allocation of any given expenditure within goods

. —&
yields is C; (7) = [P”T(:)} C. Plugging this into Eq.(A.1) yields:

/ " P(i) Gy (i) di = P.C. (A2)
0

Plugging Eq.(A.2) into Eq.(A.1) yields Eq.(5) in the text.
Representative household maximizes Eq.(1) in the text subject to Eq.(5) in the text. The
FONCs are given by:

A = %, (A.3)
A = NW{ (A.4)
A = Bh\siRe (A.5)
N = Bt ReE: (1= 8e) {T (=sp) + Bl (~sp) [B(1-RB)| ' | (A.6)

Combining Eqgs.(A.3) and (A.5) yields SE; (Ptfigzﬂ) = R% which is Eq.(6) in the text while
combining Egs.(A.3) and (A.4) yields C;N;/ = % which is Eq.(7) in the text. Combining

Egs.(A.3), (A.5) and (A.6) yields:
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which is Eq.(8) in the text.

Under Calvo—Yun-style price-setting behavior, the pricing rules are given by:

1
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P = [9133:16 +(1-0) 153—6} , (A7)

The maximization problems faced by firms given by:

max E, [Z (08)" (PrarCrin) " Vi (Pt - MC?I,H;C)]

¢ k=0
This problem’s FONC is given by:
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which can be rewritten as:
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This is Eq.(24) in the text itself.

B Deriving the Welfare Costs

We derive welfare criteria for policy authorities in the text which includes welfare cost function
Eq.(35) in the text and transitory component Y. First of all, we derive second-order approximated
utility function following Gali[3]. Second, we derive second-order approximated AS equation follow-
ing Benigno and Woodford|[2]. Third, to eliminate linear terms in these second -order approximated
utility function and AS equation, we derive second order solvency condition following Benigno and

Woodford[1]. Then we eliminate those linear terms following Benigno and Woodford[1].

B.1 Second-order Approximation of Utility Function

Second-order approximation of period utility function U; = InC; — ﬁNtH"p is given by:

UcC Nej vt
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where we use the facts that ct = §51yt ‘ g and n; = y; + 2; — a;. Here, 2 is 0 (|| £ H2)
Let define u =372 gt

Plugglng Eq.(B.1) into this definition yields:

UcC
> i) 1-® 1-9)(1 1-9®)(1
+tip.+o (] €7, (B.2)

where we use the fact that:

Z Btz = Z Bin2. (B.3)

See Chapter 6 in Woodford[7].



B.2 Second-order Approximation of AS Equation

Let define K; = Y 7 6 3k YH;C—PH;CMC'H;C and Fy = Y 7 0% 5*Y, ), where K; and F, are the
numerator and the denominator in the RHS of Eq.(24) in the text. Log-linearizing those definitions
are given by:
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fi ety + ( 5);:()( B) Ee (frarr ) = T—gm (B.4)
With Ky i1k = —SGCrk+SGGrrh+MCrirte lezl Ters and fi ok = —saCerrtsagirrt(e — 1) Ef:l Tits-
Subtracting the second equality from the first equality in Eq.(B.4) yields:
_ft:]’;:t_ft (B5)

where we define k;, = (1-608)> 1", (Hﬁ)k E; (l%t7t+k) and ﬂ =(1-608)> ", (9ﬁ)k E; (ﬂ,Hk).
Second-order approximation of the definitions ]%t,t and ft,t are given by:
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fi = ft+ ft +0(||§||)

= =09 09" (Fuss+ 3o +oll€ ) (B.6)
k=0
Plugging Eq.(B.6) into Eq.(B.5) yields:
_ S 0ok [ (i ; (1-6B)0
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with Z; =3 1, (Hﬁ)k (i@f’Hk + ft2,t+k) where we use the fact that k, — f, = %wt which can be
derived by log-linearizing the definitions K; and F;.
The first term of Eq.(B.7) can be rewritten as:

9] _ _ &S] 1
Z (gﬂ)k (kt,t+k - ft,t+k) = Z (aﬂ)k MCe+k + mpt (B.8)
k=0 k=0
with Py = >0 oy 08)" 7k
Let define kkt t+k = —SGCt+k + SGGi+k + mciqy and fft 44k = —SGCt+k T SGYt+k- Now, the
second term of Eq.(B.7) can be rewritten as:
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Let define kky; 1k = —SgCrik +5G9t+k +mCryk and ffy 41 = —CGCrik +SGGi+k- By using this
definition, the definitions of k; ;1 and f: ¢4 can be rewritten as:

k
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frave = [l +(€-1) Z Ti+s (B.10)

Plugging Eqgs.(B.8)—(B.10) into Eq.(B.7) yields:
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with Viyw = 3000, (08)" [Eﬁt,wkﬂ +(1-e¢) ﬁt,t—&-k—b—l}'
The FONC for firms can be rewritten as:
1 1y Ft e—1
L) = (E) (B.12)

By second-order approximation, Eq.(B.12) can be rewritten as:
e—1 1-6
Tt + 2(1_0)77752 =9 (ke = f)+o (1 €1°) (B.13)
Plugging Eq.(B.13) into Eq.(B.11) yields:
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which acn be rewritten as:

— — 1 /~2 2 €
v =k [kkm ~FFui+s (kkt,t 7 ft’tﬂ + Bris + 577, (B.14)
by using the definition v; = m; + ﬁﬂ'? + %wtzt + £n.
Then, we get:
i — — 1 /—~2 ~2 €
v=r ; BB, [kkt,t —fFuu+ 3 (kkm 7 ft’t> + ﬂwf} (B.15)
Second order approximation of Eq.(26) in the text MC; = % is given by:
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By using the definition of ]’C‘z)t’t+k and ]?]J‘LH,C, we have:
— — 1 /—~2 —~2 1 2 2 .
kkip — ffee+ 3 (kkt,t - fft,t) = mc;+ 3 (=sget +sage +mey)” — (—sger +s6gi)” | +s.0.t.1p.
1
= mcy + Emcf —sgeyme; + sggrmceg + s.o.t.i.p..
Let define I;ft =mc; + %mcf —sgermer + sgggmes. Then we have:
— — 1 /~2  —2
kft = kkt,t - fft,t + 5 (kkt,t - fft,t) . (B'17)

Plugging Eq.(B.16) into the definition of I;ft yields:

r[(1=7) (1 +e) +7]
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1—71

(1-7)ec+715c .

+¢(2—g)eng + ety — 2onar — (2 — g crag

1—7
1—-7)ey+7] . 1—7)ea+7. SGT .
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-7 1-—7 1—7
—sagras +s.o.tip.+o (|| € [?), (B.18)
with €, = _1\1\44%,: T, €0 = AJ@%CCTT, EN = %%1\1’\;7' and €4 = I]‘@%ZT T.
Eq.(28) in the text can be rewritten as:
Cy =Y; — Gy, (B.19)
which can be second-order approximated as:
o B 1 Cyy 2 Cva
(V1,Gy) = C+CyYy+CaGg+CyY < (1+——YY |yi + ——YGyg:
2 Cy Cy
+s.0.t.ip. +o(]| € HB) .
Because of Ct—c_,c = ¢, this can be rewritten as:
_ _ 41 C Cyg., _
Cy = CY§Clyt + Cchlgth + Cchl_ 1-— ﬂY yt2 + LYV§CV1§Gytgt
2 Cy Cy
+sotip.+o (| €°), (B.20)
1 SG SG SG .
= - g — ——yr + S Y9t +s.0.t.ip. + o0 (H £ ||3)
Sc Sc 2¢c Sé
Second-order approximation of Eq.(22) in the text N; = Y;ff can be rewritten as:
L, . 3
ng =y —ar+ SV + 20 — yrag +s.0.bip.+o ([ €°). (B.21)
Plugging Eqgs.(B.21) and (B.21) into Eq.(B.18) yields:
~ 1+ 2N T . Wyl o Wy ~92 Wy3
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with w1 = scplsc (1+20) +22 - )l —sq, w =7[1+ 6 (1= 7)),
wyz = 1 —ccfse(l-2c) —plc(2—<c) =21}, wa = pc[1+2(1+9)] + (14+¢) (2 - 6),
wys = sgec(1—7), wye = (1 —7)(pey +€a) + T(1+ ) and wyr = (1 —17) [ec + pscen] +
7o (14 ¢).

Plugging Eq.(B.22) into Eq.(B.15), we have:

1+ oso T Wyl o V2 .9 | Wu3 Wy4
= K B'Eo [ Y + Tt + =y + —Tt + =Ygt — Yiay
Zt - 1— 22, 262 2 Sc
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where we use Eq.(B.3).

+tip., (B.23)

B.3 Second-order Approximation of Solvency Condition

Let define:

[e e}

W, =Y B'E, (C;'SP) (B.24)

t=0
with W, = (1 —6;) C; 'RE BT, .
First, we take a second-order approximation of C; LS P, as follows:
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Second-order approximation of the definition of SP; = 7;Y; — G, is given by:

1
C’t_lSPt =Cc-lsp (1 — ¢ + spy + —cf + ctspt) + s.0.t.i.p. (B.25)

1+ wy 22 1 +wy 2

SPpt = (1 + wg) e + (1 + wg) Yt — wgGt + T + y; + (1 + wg) YTt + s.0.t.1.p.

2 2
+o(ll€1°), (B.26)
with wy = S% where we use the fact that sp; = SPB;PSP.
Plugging Eq.(B.21) into Eq.(B.25) yields:
_ - S 1+ 25G
Cc;l'sp, = [1 — o'y + S g+ sp+ —QGZ/? ——Ytgt — SCY+SDt + _gtspt]
Sc 26¢ &
+s.o.tip. +o (] €]?). (B.27)
Plugging Eq.(B.26) into Eq.(B.27) yields:
1-— 1 -
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Yo, el 2
1 +w Wap l14+wy)se . se(l+wa).
——2 + 2yt9t ( ) Sy + al G)Ttgt:|
2 Sc sc
+s.0.t.i.p. +o (H P, (B.28)

with w1 = (14+6) [1 —sc (1 +wy)] and wye = s¢ [sa (1 + wy) + wy] — 2¢6.

_ ¢ 'sp—Cc~'sp - . . .
Let define w; = ~—=5p—— Combining Eqs.(B.24) and (B.28) and this definition yields:

1-¢(l+tw G — Scw . w 1+tw
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gc SC SC
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Iterating forward Eq.(B.29) yields:

- ]- — S 1+w . Wy 1+w R
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B.4 Eliminating Liner Terms

In the first-order, Egs.(B.3), (B.23) and (B.30) are given by:

> l1—-¢c(l+w N .
w o= (1-8)) B'E [—%yt +(1 +wg)n} +tip.+o (] £]?)
t=0
- 1+ T .
v = RZﬂtEt [ C(pyt—i— Tt:| +tip.+o (] €17)
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t=0 s
Thus, we formularize to eliminate linear terms on y; and 7; in the last equality in Eq.(B.31) as
follows:
P 1-— 1 1
2 _ oy, [_ sc ( +wg)]+192[ +§c¢}
Sc Yo e
T
0 = ¥( 9
1 (1+wy) + 92 (1—7)

where 1 and 5 are undetermined coefficients. Here, % and 0 are coefficients on y; and 74 in

the last equality in Eq.(B.31) while —%ﬁwg) and (1 + wy) are coefficients on those in the first
equality in Eq.(B.31), respectively and and 1+ch0<€ and 17 are coefficients on those in the second
equality in Eq.(B.31), respectively.
By solving this system, we get:
TP

9, = - (B.32)

withD'= (14+wy) (1—7)(1+scp)+ 71— (14+wy)]
By using the facts that — 1—<c§(;+wg) and 1+§<ch0 are coefficients on y; on Egs.(B.23) and (B.30),
the linear term y; on Eq.(B.3) is given by:

SIS _ _ - W 14wy ., Wy
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where Yo = _F(T<I> w —+ (l—T)%I’:-wg)(I’V.

1-5)
By plugging Egs.(B.32) and (B.33) into Eq.(B.34), we get:
gt 2 3 (1 -7) (A +w)wn —wul »
Y B —Eo(y) = ->_ B'Eo { 5 Y
=0 ¢ t=0 20C
D lwyo — (1 —7) (1 +wy) w, P(l—7)(1+wy)w,
P fwuwer —( 2)( 9) 3]ytgt— (1—7) (1 +w) 4y
Fgc I'sc
1— 1+ Pe (1 + .
+( alt 2(;2) (L+¢) Wf} + Yo +tip.+o(] £]°). (B.35)

Plugging Eq.(B.35) into Eq.(B.2) yields:

A, . Ar .
u= —ZﬂtEo [7 (Yt — vy )2 + 77@2} + Yo+ tip.+o0 (H £ H?’) ,
t=0

which is second-order approximated utility function without linear terms and terms in parentheses
corresponds to Eq.(35) in the text.

C FONC:s for Policy Authorities

Under the OM policy, The Lagrangean is given by:

[e e}

. sc(1-0 Yo
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2 5% 3
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Kk (1 4+ g 1. Wo 1
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sc w ¢Bw w

=B 1B ) __ B
g Di—1 o t+1 Hat |\ SPt (1_@%’% Esp,t .

Note that 7; disappears because of 7; = 0 for all ¢. The FONCs are given by Eqgs.(38)—(42) in the
text.

Under the MIS policy, The Lagrangean is given by:
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R o (1- SC .
£ = ZﬂtEo {Lf + 1 |:='Et — Typ1 + STt — SCTiq1 + M&fﬂ — —Ti-1
=0 Bé B
Sc Scw. Scw so (wy + @8
+Eﬂ't - ﬂ2¢06t + 3 Spy — ( ’éz )5pt—1 - ex,t:| + po [T
K (1+ s 1. Wo 1
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Sc w B w

—7“)7_@563 —1_ﬂ6 — s __pr Ty —
- Pt—1 o t+1 Hat | SPt 11— 0B)en t — Espyt .

Note that 7; disappears because of 7y = 0 for all ¢. The FONCs are given by Eq.(40) and Eqs(42)-
(45) in the text where we plug Eq.(9) in the text into LE.
Under the OMF policy, The Lagrangean is given by:

o0
R sc (1 - e
£ = Y BEo§Li+py @ — ey + S0t — Somip1 + M§t+1 — i
=0 B 5



S Sow scw so (wy +
LSO, SCWos L SCT c (wy +¢P)

3 ) 3 - I Spi—1 — Ez,t] + p2. [

k(1 4+ g KT 1. Wo 1
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The FONCs are given by Eqs.(38)—-(42) in the text and po, = _%/‘4&-
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